MPL 11x11x1 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020116
GTIN/EAN: 5906301811220
Długość
11 mm [±0,1 mm]
Szerokość
11 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.91 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.43 kg / 4.24 N
Indukcja magnetyczna
100.10 mT / 1001 Gs
Powłoka
[NiCuNi] nikiel
0.873 ZŁ z VAT / szt. + cena za transport
0.710 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo napisz korzystając z
formularz
w sekcji kontakt.
Właściwości i wygląd magnesów testujesz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja produktu - MPL 11x11x1 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 11x11x1 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020116 |
| GTIN/EAN | 5906301811220 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 11 mm [±0,1 mm] |
| Szerokość | 11 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.91 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.43 kg / 4.24 N |
| Indukcja magnetyczna ~ ? | 100.10 mT / 1001 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione dane stanowią bezpośredni efekt analizy fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 11x11x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1001 Gs
100.1 mT
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
bezpieczny |
| 1 mm |
925 Gs
92.5 mT
|
0.37 kg / 0.81 lbs
367.7 g / 3.6 N
|
bezpieczny |
| 2 mm |
800 Gs
80.0 mT
|
0.27 kg / 0.61 lbs
274.9 g / 2.7 N
|
bezpieczny |
| 3 mm |
659 Gs
65.9 mT
|
0.19 kg / 0.41 lbs
186.5 g / 1.8 N
|
bezpieczny |
| 5 mm |
415 Gs
41.5 mT
|
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
bezpieczny |
| 10 mm |
130 Gs
13.0 mT
|
0.01 kg / 0.02 lbs
7.3 g / 0.1 N
|
bezpieczny |
| 15 mm |
51 Gs
5.1 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
bezpieczny |
| 20 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
bezpieczny |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 11x11x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 1 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 11x11x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.13 kg / 0.28 lbs
129.0 g / 1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 0.09 lbs
43.0 g / 0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.22 kg / 0.47 lbs
215.0 g / 2.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 11x11x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 0.09 lbs
43.0 g / 0.4 N
|
| 1 mm |
|
0.11 kg / 0.24 lbs
107.5 g / 1.1 N
|
| 2 mm |
|
0.22 kg / 0.47 lbs
215.0 g / 2.1 N
|
| 3 mm |
|
0.32 kg / 0.71 lbs
322.5 g / 3.2 N
|
| 5 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
| 10 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
| 11 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
| 12 mm |
|
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 11x11x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.43 kg / 0.95 lbs
430.0 g / 4.2 N
|
OK |
| 40 °C | -2.2% |
0.42 kg / 0.93 lbs
420.5 g / 4.1 N
|
OK |
| 60 °C | -4.4% |
0.41 kg / 0.91 lbs
411.1 g / 4.0 N
|
|
| 80 °C | -6.6% |
0.40 kg / 0.89 lbs
401.6 g / 3.9 N
|
|
| 100 °C | -28.8% |
0.31 kg / 0.67 lbs
306.2 g / 3.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 11x11x1 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.75 kg / 1.65 lbs
1 925 Gs
|
0.11 kg / 0.25 lbs
112 g / 1.1 N
|
N/A |
| 1 mm |
0.70 kg / 1.55 lbs
1 943 Gs
|
0.11 kg / 0.23 lbs
106 g / 1.0 N
|
0.63 kg / 1.40 lbs
~0 Gs
|
| 2 mm |
0.64 kg / 1.41 lbs
1 851 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
0.58 kg / 1.27 lbs
~0 Gs
|
| 3 mm |
0.56 kg / 1.24 lbs
1 734 Gs
|
0.08 kg / 0.19 lbs
84 g / 0.8 N
|
0.50 kg / 1.11 lbs
~0 Gs
|
| 5 mm |
0.40 kg / 0.88 lbs
1 460 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.79 lbs
~0 Gs
|
| 10 mm |
0.13 kg / 0.28 lbs
831 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.03 lbs
261 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 11x11x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 11x11x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.15 km/h
(6.15 m/s)
|
0.02 J | |
| 30 mm |
37.97 km/h
(10.55 m/s)
|
0.05 J | |
| 50 mm |
49.02 km/h
(13.62 m/s)
|
0.08 J | |
| 100 mm |
69.33 km/h
(19.26 m/s)
|
0.17 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 11x11x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 11x11x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 627 Mx | 16.3 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 11x11x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.43 kg | Standard |
| Woda (dno rzeki) |
0.49 kg
(+0.06 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.13
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o grubości przynajmniej 10 mm
- o idealnie gładkiej powierzchni kontaktu
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe redukują właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą obniża udźwig.
Zasady BHP dla użytkowników magnesów
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zagrożenie fizyczne
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Zakaz obróbki
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ryzyko pęknięcia
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Moc przyciągania
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Chronić przed dziećmi
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Ostrzeżenie dla alergików
Pewna grupa użytkowników wykazuje uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Rekomendujemy stosowanie rękawic bezlateksowych.
