MPL 10x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020115
GTIN/EAN: 5906301811213
Długość
10 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.58 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.02 kg / 19.82 N
Indukcja magnetyczna
339.79 mT / 3398 Gs
Powłoka
[NiCuNi] nikiel
0.849 ZŁ z VAT / szt. + cena za transport
0.690 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie pisz za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Masę i wygląd magnesów obliczysz w naszym
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne produktu - MPL 10x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020115 |
| GTIN/EAN | 5906301811213 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.58 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.02 kg / 19.82 N |
| Indukcja magnetyczna ~ ? | 339.79 mT / 3398 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - dane
Niniejsze wartości są wynik analizy inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą się różnić. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 10x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3396 Gs
339.6 mT
|
2.02 kg / 2020.0 g
19.8 N
|
uwaga |
| 1 mm |
2727 Gs
272.7 mT
|
1.30 kg / 1303.2 g
12.8 N
|
bezpieczny |
| 2 mm |
2053 Gs
205.3 mT
|
0.74 kg / 738.2 g
7.2 N
|
bezpieczny |
| 3 mm |
1502 Gs
150.2 mT
|
0.40 kg / 395.2 g
3.9 N
|
bezpieczny |
| 5 mm |
803 Gs
80.3 mT
|
0.11 kg / 113.0 g
1.1 N
|
bezpieczny |
| 10 mm |
216 Gs
21.6 mT
|
0.01 kg / 8.2 g
0.1 N
|
bezpieczny |
| 15 mm |
82 Gs
8.2 mT
|
0.00 kg / 1.2 g
0.0 N
|
bezpieczny |
| 20 mm |
39 Gs
3.9 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 30 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 10x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.40 kg / 404.0 g
4.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 10x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 606.0 g
5.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.40 kg / 404.0 g
4.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 202.0 g
2.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.01 kg / 1010.0 g
9.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 10x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 202.0 g
2.0 N
|
| 1 mm |
|
0.51 kg / 505.0 g
5.0 N
|
| 2 mm |
|
1.01 kg / 1010.0 g
9.9 N
|
| 5 mm |
|
2.02 kg / 2020.0 g
19.8 N
|
| 10 mm |
|
2.02 kg / 2020.0 g
19.8 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 10x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.02 kg / 2020.0 g
19.8 N
|
OK |
| 40 °C | -2.2% |
1.98 kg / 1975.6 g
19.4 N
|
OK |
| 60 °C | -4.4% |
1.93 kg / 1931.1 g
18.9 N
|
|
| 80 °C | -6.6% |
1.89 kg / 1886.7 g
18.5 N
|
|
| 100 °C | -28.8% |
1.44 kg / 1438.2 g
14.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 10x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.98 kg / 4976 g
48.8 N
4 893 Gs
|
N/A |
| 1 mm |
4.09 kg / 4088 g
40.1 N
6 155 Gs
|
3.68 kg / 3679 g
36.1 N
~0 Gs
|
| 2 mm |
3.21 kg / 3210 g
31.5 N
5 455 Gs
|
2.89 kg / 2889 g
28.3 N
~0 Gs
|
| 3 mm |
2.44 kg / 2443 g
24.0 N
4 758 Gs
|
2.20 kg / 2199 g
21.6 N
~0 Gs
|
| 5 mm |
1.34 kg / 1335 g
13.1 N
3 518 Gs
|
1.20 kg / 1202 g
11.8 N
~0 Gs
|
| 10 mm |
0.28 kg / 278 g
2.7 N
1 606 Gs
|
0.25 kg / 250 g
2.5 N
~0 Gs
|
| 20 mm |
0.02 kg / 20 g
0.2 N
433 Gs
|
0.02 kg / 18 g
0.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
43 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MPL 10x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 10x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
36.15 km/h
(10.04 m/s)
|
0.08 J | |
| 30 mm |
62.46 km/h
(17.35 m/s)
|
0.24 J | |
| 50 mm |
80.63 km/h
(22.40 m/s)
|
0.40 J | |
| 100 mm |
114.03 km/h
(31.68 m/s)
|
0.79 J |
Tabela 9: Odporność na korozję
MPL 10x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 10x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 480 Mx | 24.8 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 10x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.02 kg | Standard |
| Woda (dno rzeki) |
2.31 kg
(+0.29 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
UMP 94x40 [3xM10] GW F550 Silver Black Lina / N52 - uchwyty magnetyczne do poszukiwań
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- z płaszczyzną oczyszczoną i gładką
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (między magnesem a metalem), bowiem nawet mikroskopijna odległość (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje nośność.
Ostrzeżenia
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Ryzyko pożaru
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Urazy ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Unikaj kontaktu w przypadku alergii
Część populacji ma uczulenie na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować wysypkę. Zalecamy stosowanie rękawic bezlateksowych.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zakłócenia GPS i telefonów
Pamiętaj: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Nie lekceważ mocy
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
