MPL 10x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020115
GTIN: 5906301811213
Długość
10 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.58 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.02 kg / 19.82 N
Indukcja magnetyczna
339.79 mT / 3398 Gs
Powłoka
[NiCuNi] nikiel
0.849 ZŁ z VAT / szt. + cena za transport
0.690 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie pisz przez
formularz zgłoszeniowy
w sekcji kontakt.
Masę i formę elementów magnetycznych zobaczysz w naszym
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 10x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020115 |
| GTIN | 5906301811213 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.58 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.02 kg / 19.82 N |
| Indukcja magnetyczna ~ ? | 339.79 mT / 3398 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Poniższe informacje są wynik kalkulacji matematycznej. Wartości bazują na algorytmach dla klasy NdFeB. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
MPL 10x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3396 Gs
339.6 mT
|
2.02 kg / 2020.0 g
19.8 N
|
uwaga |
| 1 mm |
2727 Gs
272.7 mT
|
1.30 kg / 1303.2 g
12.8 N
|
bezpieczny |
| 2 mm |
2053 Gs
205.3 mT
|
0.74 kg / 738.2 g
7.2 N
|
bezpieczny |
| 3 mm |
1502 Gs
150.2 mT
|
0.40 kg / 395.2 g
3.9 N
|
bezpieczny |
| 5 mm |
803 Gs
80.3 mT
|
0.11 kg / 113.0 g
1.1 N
|
bezpieczny |
| 10 mm |
216 Gs
21.6 mT
|
0.01 kg / 8.2 g
0.1 N
|
bezpieczny |
| 15 mm |
82 Gs
8.2 mT
|
0.00 kg / 1.2 g
0.0 N
|
bezpieczny |
| 20 mm |
39 Gs
3.9 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 30 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MPL 10x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.40 kg / 404.0 g
4.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 22.0 g
0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 10x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.61 kg / 606.0 g
5.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.40 kg / 404.0 g
4.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.20 kg / 202.0 g
2.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.01 kg / 1010.0 g
9.9 N
|
MPL 10x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.20 kg / 202.0 g
2.0 N
|
| 1 mm |
|
0.51 kg / 505.0 g
5.0 N
|
| 2 mm |
|
1.01 kg / 1010.0 g
9.9 N
|
| 5 mm |
|
2.02 kg / 2020.0 g
19.8 N
|
| 10 mm |
|
2.02 kg / 2020.0 g
19.8 N
|
MPL 10x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.02 kg / 2020.0 g
19.8 N
|
OK |
| 40 °C | -2.2% |
1.98 kg / 1975.6 g
19.4 N
|
OK |
| 60 °C | -4.4% |
1.93 kg / 1931.1 g
18.9 N
|
|
| 80 °C | -6.6% |
1.89 kg / 1886.7 g
18.5 N
|
|
| 100 °C | -28.8% |
1.44 kg / 1438.2 g
14.1 N
|
MPL 10x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
6.72 kg / 6719 g
65.9 N
12 386 Gs
|
N/A |
| 1 mm |
1.30 kg / 1303 g
12.8 N
6 155 Gs
|
1.17 kg / 1173 g
11.5 N
~0 Gs
|
| 2 mm |
0.74 kg / 738 g
7.2 N
5 455 Gs
|
0.66 kg / 664 g
6.5 N
~0 Gs
|
| 3 mm |
0.40 kg / 395 g
3.9 N
4 758 Gs
|
0.36 kg / 356 g
3.5 N
~0 Gs
|
| 5 mm |
0.11 kg / 113 g
1.1 N
3 518 Gs
|
0.10 kg / 102 g
1.0 N
~0 Gs
|
| 10 mm |
0.01 kg / 8 g
0.1 N
1 606 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
433 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
43 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 10x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 10x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
36.15 km/h
(10.04 m/s)
|
0.08 J | |
| 30 mm |
62.46 km/h
(17.35 m/s)
|
0.24 J | |
| 50 mm |
80.63 km/h
(22.40 m/s)
|
0.40 J | |
| 100 mm |
114.03 km/h
(31.68 m/s)
|
0.79 J |
MPL 10x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 480 Mx | 24.8 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
MPL 10x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.02 kg | Standard |
| Woda (dno rzeki) |
2.31 kg
(+0.29 kg Zysk z wyporności)
|
+14.5% |
Inne oferty
Wady i zalety magnesów z neodymu NdFeB.
Neodymy to nie tylko siła, ale także inne istotne cechy, takie jak::
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i silników, po zaawansowaną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
Podany w tabeli udźwig jest wynikiem testu laboratoryjnego przeprowadzonego w warunkach wzorcowych:
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- o przekroju przynajmniej 10 mm
- charakteryzującej się gładkością
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczny udźwig: czynniki wpływające
Warto wiedzieć, iż trzymanie magnesu może być niższe pod wpływem poniższych elementów, zaczynając od najistotniejszych:
- Dystans – obecność ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Niklowa powłoka a alergia
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Podatność na pękanie
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Implanty kardiologiczne
Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może rozregulować pracę implantu.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
To nie jest zabawka
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Trzymaj z dala od elektroniki
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Łatwopalność
Proszek powstający podczas szlifowania magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uwaga!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
