Neodymy – szeroki wybór kształtów

Chcesz kupić naprawdę silne magnesy? Oferujemy kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do zastosowań domowych, garażu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

zobacz cennik i wymiary

Uchwyty do eksploracji dna

Rozpocznij przygodę z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Nierdzewna konstrukcja oraz mocne linki sprawdzą się w rzekach i jeziorach.

wybierz zestaw dla siebie

Profesjonalne uchwyty z gwintem

Profesjonalne rozwiązania do mocowania bez wiercenia. Mocowania gwintowane (zewnętrznym lub wewnętrznym) gwarantują szybkie usprawnienie pracy na halach produkcyjnych. Idealnie nadają się przy instalacji oświetlenia, sensorów oraz reklam.

zobacz parametry techniczne

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 10x5x1.5 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020114

GTIN/EAN: 5906301811206

5.00

Długość

10 mm [±0,1 mm]

Szerokość

5 mm [±0,1 mm]

Wysokość

1.5 mm [±0,1 mm]

Waga

0.56 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.86 kg / 8.47 N

Indukcja magnetyczna

239.33 mT / 2393 Gs

Powłoka

[NiCuNi] nikiel

0.381 z VAT / szt. + cena za transport

0.310 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.310 ZŁ
0.381 ZŁ
cena od 2000 szt.
0.291 ZŁ
0.358 ZŁ
cena od 8100 szt.
0.273 ZŁ
0.336 ZŁ
Nie wiesz co wybrać?

Skontaktuj się z nami telefonicznie +48 22 499 98 98 lub skontaktuj się za pomocą formularz zgłoszeniowy na stronie kontakt.
Siłę a także kształt elementów magnetycznych przetestujesz u nas w kalkulatorze siły.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Karta produktu - MPL 10x5x1.5 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 10x5x1.5 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020114
GTIN/EAN 5906301811206
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 10 mm [±0,1 mm]
Szerokość 5 mm [±0,1 mm]
Wysokość 1.5 mm [±0,1 mm]
Waga 0.56 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.86 kg / 8.47 N
Indukcja magnetyczna ~ ? 239.33 mT / 2393 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 10x5x1.5 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja techniczna magnesu - raport

Niniejsze informacje są bezpośredni efekt symulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MPL 10x5x1.5 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 2392 Gs
239.2 mT
0.86 kg / 860.0 g
8.4 N
słaby uchwyt
1 mm 1814 Gs
181.4 mT
0.49 kg / 494.9 g
4.9 N
słaby uchwyt
2 mm 1242 Gs
124.2 mT
0.23 kg / 232.1 g
2.3 N
słaby uchwyt
3 mm 836 Gs
83.6 mT
0.11 kg / 105.1 g
1.0 N
słaby uchwyt
5 mm 399 Gs
39.9 mT
0.02 kg / 23.9 g
0.2 N
słaby uchwyt
10 mm 94 Gs
9.4 mT
0.00 kg / 1.3 g
0.0 N
słaby uchwyt
15 mm 34 Gs
3.4 mT
0.00 kg / 0.2 g
0.0 N
słaby uchwyt
20 mm 15 Gs
1.5 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
30 mm 5 Gs
0.5 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
50 mm 1 Gs
0.1 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt

Tabela 2: Równoległa siła obsunięcia (pion)
MPL 10x5x1.5 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.17 kg / 172.0 g
1.7 N
1 mm Stal (~0.2) 0.10 kg / 98.0 g
1.0 N
2 mm Stal (~0.2) 0.05 kg / 46.0 g
0.5 N
3 mm Stal (~0.2) 0.02 kg / 22.0 g
0.2 N
5 mm Stal (~0.2) 0.00 kg / 4.0 g
0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 10x5x1.5 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.26 kg / 258.0 g
2.5 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.17 kg / 172.0 g
1.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.09 kg / 86.0 g
0.8 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.43 kg / 430.0 g
4.2 N

Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 10x5x1.5 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.09 kg / 86.0 g
0.8 N
1 mm
25%
0.22 kg / 215.0 g
2.1 N
2 mm
50%
0.43 kg / 430.0 g
4.2 N
5 mm
100%
0.86 kg / 860.0 g
8.4 N
10 mm
100%
0.86 kg / 860.0 g
8.4 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 10x5x1.5 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 0.86 kg / 860.0 g
8.4 N
OK
40 °C -2.2% 0.84 kg / 841.1 g
8.3 N
OK
60 °C -4.4% 0.82 kg / 822.2 g
8.1 N
80 °C -6.6% 0.80 kg / 803.2 g
7.9 N
100 °C -28.8% 0.61 kg / 612.3 g
6.0 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 10x5x1.5 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 1.76 kg / 1763 g
17.3 N
3 896 Gs
N/A
1 mm 1.39 kg / 1395 g
13.7 N
4 254 Gs
1.26 kg / 1255 g
12.3 N
~0 Gs
2 mm 1.01 kg / 1015 g
10.0 N
3 628 Gs
0.91 kg / 913 g
9.0 N
~0 Gs
3 mm 0.70 kg / 703 g
6.9 N
3 020 Gs
0.63 kg / 633 g
6.2 N
~0 Gs
5 mm 0.32 kg / 320 g
3.1 N
2 037 Gs
0.29 kg / 288 g
2.8 N
~0 Gs
10 mm 0.05 kg / 49 g
0.5 N
798 Gs
0.04 kg / 44 g
0.4 N
~0 Gs
20 mm 0.00 kg / 3 g
0.0 N
188 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
17 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 10x5x1.5 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.0 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Czasomierz 20 Gs (2.0 mT) 2.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 10x5x1.5 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 39.56 km/h
(10.99 m/s)
0.03 J
30 mm 68.45 km/h
(19.02 m/s)
0.10 J
50 mm 88.37 km/h
(24.55 m/s)
0.17 J
100 mm 124.98 km/h
(34.72 m/s)
0.34 J

Tabela 9: Parametry powłoki (trwałość)
MPL 10x5x1.5 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Strumień)
MPL 10x5x1.5 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 281 Mx 12.8 µWb
Współczynnik Pc 0.27 Niski (Płaski)

Tabela 11: Hydrostatyka i wyporność
MPL 10x5x1.5 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.86 kg Standard
Woda (dno rzeki) 0.98 kg
(+0.12 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Ześlizg (ściana)

*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.

2. Efektywność, a grubość stali

*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.

3. Wytrzymałość temperaturowa

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.27

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020114-2025
Przelicznik magnesów
Udźwig magnesu

Moc pola

Sprawdź inne produkty

Produkt ten to bardzo silny magnes w kształcie płytki wykonany z materiału NdFeB, co przy wymiarach 10x5x1.5 mm i wadze 0.56 g gwarantuje klasę premium połączenia. Ten blok magnetyczny o sile 8.47 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Kluczem do sukcesu jest zsuniecie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Uważaj na palce! Magnesy o sile 0.86 kg potrafią bardzo mocno uszczypnąć i spowodować krwiaki. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Magnesy płytkowe MPL 10x5x1.5 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak filtry wyłapujące opiłki oraz silniki liniowe. Świetnie sprawdzają się jako niewidoczne mocowania pod płytkami, drewnem czy szkłem. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 10x5x1.5 / N38 najlepiej używać kleje dwuskładnikowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Pamiętaj, aby przed klejeniem zmatowić i przemyć powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Standardowo model MPL 10x5x1.5 / N38 jest magnesowany osiowo (wymiar 1.5 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Taki układ biegunów zapewnia maksymalny udźwig przy dociskaniu do blachy, tworząc zamknięty obwód magnetyczny.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: 10 mm (długość), 5 mm (szerokość) i 1.5 mm (grubość). Kluczowym parametrem jest tutaj udźwig wynoszący około 0.86 kg (siła ~8.47 N), co przy tak kompaktowym kształcie świadczy o wysokiej klasie materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Wady i zalety magnesów neodymowych Nd2Fe14B.

Plusy

Magnesy neodymowe to nie tylko siła, ale także inne kluczowe cechy, takie jak::
  • Długowieczność to ich atut – nawet po dekady utrata mocy wynosi jedynie ~1% (wg testów).
  • Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
  • Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
  • Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
  • Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Wszechstronność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
  • Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.

Ograniczenia

Mimo zalet, posiadają też wady:
  • Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub montaż w stali.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.

Analiza siły trzymania

Maksymalny udźwig magnesuco ma na to wpływ?

Widoczny w opisie parametr udźwigu dotyczy maksymalnych osiągów, którą uzyskano w idealnych warunkach testowych, co oznacza test:
  • z zastosowaniem blachy ze stali niskowęglowej, która służy jako zwora magnetyczna
  • posiadającej grubość min. 10 mm aby uniknąć nasycenia
  • z powierzchnią oczyszczoną i gładką
  • w warunkach braku dystansu (metal do metalu)
  • dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
  • w warunkach ok. 20°C

Udźwig magnesu w użyciu – kluczowe czynniki

Należy pamiętać, że udźwig roboczy będzie inne pod wpływem następujących czynników, zaczynając od najistotniejszych:
  • Dystans – występowanie ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
  • Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość stali – zbyt cienka blacha nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
  • Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
  • Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
  • Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.

Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża udźwig.

Bezpieczna praca przy magnesach neodymowych
Ryzyko rozmagnesowania

Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.

Nośniki danych

Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).

Zakłócenia GPS i telefonów

Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.

Unikaj kontaktu w przypadku alergii

Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.

Siła neodymu

Używaj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.

Niebezpieczeństwo dla rozruszników

Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.

Zakaz obróbki

Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.

Siła zgniatająca

Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.

Podatność na pękanie

Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.

Zakaz zabawy

Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.

Safety First! Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98