MPL 10x10x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020112
GTIN: 5906301811183
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
3 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.10 kg / 30.39 N
Indukcja magnetyczna
360.85 mT / 3608 Gs
Powłoka
[NiCuNi] nikiel
1.538 ZŁ z VAT / szt. + cena za transport
1.250 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Zadzwoń do nas
+48 888 99 98 98
lub daj znać poprzez
formularz
w sekcji kontakt.
Udźwig i budowę magnesu neodymowego przetestujesz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 10x10x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x10x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020112 |
| GTIN | 5906301811183 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.10 kg / 30.39 N |
| Indukcja magnetyczna ~ ? | 360.85 mT / 3608 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Przedstawione wartości stanowią bezpośredni efekt symulacji fizycznej. Wartości oparte są na algorytmach dla klasy NdFeB. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
MPL 10x10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3606 Gs
360.6 mT
|
3.10 kg / 3100.0 g
30.4 N
|
mocny |
| 1 mm |
3035 Gs
303.5 mT
|
2.20 kg / 2195.5 g
21.5 N
|
mocny |
| 2 mm |
2436 Gs
243.6 mT
|
1.41 kg / 1413.8 g
13.9 N
|
bezpieczny |
| 3 mm |
1900 Gs
190.0 mT
|
0.86 kg / 860.8 g
8.4 N
|
bezpieczny |
| 5 mm |
1127 Gs
112.7 mT
|
0.30 kg / 302.7 g
3.0 N
|
bezpieczny |
| 10 mm |
347 Gs
34.7 mT
|
0.03 kg / 28.8 g
0.3 N
|
bezpieczny |
| 15 mm |
140 Gs
14.0 mT
|
0.00 kg / 4.6 g
0.0 N
|
bezpieczny |
| 20 mm |
68 Gs
6.8 mT
|
0.00 kg / 1.1 g
0.0 N
|
bezpieczny |
| 30 mm |
23 Gs
2.3 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MPL 10x10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.62 kg / 620.0 g
6.1 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 440.0 g
4.3 N
|
| 2 mm | Stal (~0.2) |
0.28 kg / 282.0 g
2.8 N
|
| 3 mm | Stal (~0.2) |
0.17 kg / 172.0 g
1.7 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 60.0 g
0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 10x10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.93 kg / 930.0 g
9.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.62 kg / 620.0 g
6.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.31 kg / 310.0 g
3.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.55 kg / 1550.0 g
15.2 N
|
MPL 10x10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.31 kg / 310.0 g
3.0 N
|
| 1 mm |
|
0.78 kg / 775.0 g
7.6 N
|
| 2 mm |
|
1.55 kg / 1550.0 g
15.2 N
|
| 5 mm |
|
3.10 kg / 3100.0 g
30.4 N
|
| 10 mm |
|
3.10 kg / 3100.0 g
30.4 N
|
MPL 10x10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.10 kg / 3100.0 g
30.4 N
|
OK |
| 40 °C | -2.2% |
3.03 kg / 3031.8 g
29.7 N
|
OK |
| 60 °C | -4.4% |
2.96 kg / 2963.6 g
29.1 N
|
|
| 80 °C | -6.6% |
2.90 kg / 2895.4 g
28.4 N
|
|
| 100 °C | -28.8% |
2.21 kg / 2207.2 g
21.7 N
|
MPL 10x10x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
9.15 kg / 9145 g
89.7 N
12 389 Gs
|
N/A |
| 1 mm |
2.20 kg / 2196 g
21.5 N
6 667 Gs
|
1.98 kg / 1976 g
19.4 N
~0 Gs
|
| 2 mm |
1.41 kg / 1414 g
13.9 N
6 070 Gs
|
1.27 kg / 1272 g
12.5 N
~0 Gs
|
| 3 mm |
0.86 kg / 861 g
8.4 N
5 463 Gs
|
0.77 kg / 775 g
7.6 N
~0 Gs
|
| 5 mm |
0.30 kg / 303 g
3.0 N
4 313 Gs
|
0.27 kg / 272 g
2.7 N
~0 Gs
|
| 10 mm |
0.03 kg / 29 g
0.3 N
2 254 Gs
|
0.03 kg / 26 g
0.3 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
695 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
76 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 10x10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 10x10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.61 km/h
(9.06 m/s)
|
0.12 J | |
| 30 mm |
56.15 km/h
(15.60 m/s)
|
0.36 J | |
| 50 mm |
72.49 km/h
(20.14 m/s)
|
0.61 J | |
| 100 mm |
102.52 km/h
(28.48 m/s)
|
1.22 J |
MPL 10x10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 760 Mx | 37.6 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
MPL 10x10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.10 kg | Standard |
| Woda (dno rzeki) |
3.55 kg
(+0.45 kg Zysk z wyporności)
|
+14.5% |
Zobacz też inne oferty
Wady oraz zalety neodymowych magnesów NdFeB.
Warto zwrócić uwagę, że obok wysokiej mocy, produkty te wyróżniają się następującymi zaletami:
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
Podany w tabeli udźwig jest wartością teoretyczną maksymalną wykonanego w specyficznych, idealnych warunkach:
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o przekroju nie mniejszej niż 10 mm
- o wypolerowanej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w warunkach ok. 20°C
Praktyczne aspekty udźwigu – czynniki
Trzeba mieć na uwadze, że trzymanie magnesu może być niższe zależnie od poniższych elementów, zaczynając od najistotniejszych:
- Szczelina – obecność ciała obcego (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – zbyt cienka płyta nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
* Udźwig określano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Bezpieczna praca z magnesami neodymowymi
Chronić przed dziećmi
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Ogromna siła
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Zagrożenie dla elektroniki
Ekstremalne oddziaływanie może usunąć informacje na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Wpływ na zdrowie
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Nadwrażliwość na metale
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Kompas i GPS
Intensywne promieniowanie magnetyczne zakłóca działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Rozprysk materiału
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Ważne!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
