MPL 10x10x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020111
GTIN/EAN: 5906301811176
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.32 kg / 22.77 N
Indukcja magnetyczna
293.71 mT / 2937 Gs
Powłoka
[NiCuNi] nikiel
1.414 ZŁ z VAT / szt. + cena za transport
1.150 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Dzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
nasz formularz online
na naszej stronie.
Udźwig a także formę magnesu zobaczysz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MPL 10x10x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x10x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020111 |
| GTIN/EAN | 5906301811176 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.32 kg / 22.77 N |
| Indukcja magnetyczna ~ ? | 293.71 mT / 2937 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze informacje są wynik kalkulacji fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
MPL 10x10x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2936 Gs
293.6 mT
|
2.32 kg / 2320.0 g
22.8 N
|
mocny |
| 1 mm |
2513 Gs
251.3 mT
|
1.70 kg / 1700.6 g
16.7 N
|
niskie ryzyko |
| 2 mm |
2036 Gs
203.6 mT
|
1.12 kg / 1115.5 g
10.9 N
|
niskie ryzyko |
| 3 mm |
1594 Gs
159.4 mT
|
0.68 kg / 683.9 g
6.7 N
|
niskie ryzyko |
| 5 mm |
943 Gs
94.3 mT
|
0.24 kg / 239.3 g
2.3 N
|
niskie ryzyko |
| 10 mm |
285 Gs
28.5 mT
|
0.02 kg / 21.8 g
0.2 N
|
niskie ryzyko |
| 15 mm |
112 Gs
11.2 mT
|
0.00 kg / 3.4 g
0.0 N
|
niskie ryzyko |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.8 g
0.0 N
|
niskie ryzyko |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 10x10x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.46 kg / 464.0 g
4.6 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 340.0 g
3.3 N
|
| 2 mm | Stal (~0.2) |
0.22 kg / 224.0 g
2.2 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 136.0 g
1.3 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 10x10x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 696.0 g
6.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.46 kg / 464.0 g
4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 232.0 g
2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.16 kg / 1160.0 g
11.4 N
|
MPL 10x10x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 232.0 g
2.3 N
|
| 1 mm |
|
0.58 kg / 580.0 g
5.7 N
|
| 2 mm |
|
1.16 kg / 1160.0 g
11.4 N
|
| 5 mm |
|
2.32 kg / 2320.0 g
22.8 N
|
| 10 mm |
|
2.32 kg / 2320.0 g
22.8 N
|
MPL 10x10x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.32 kg / 2320.0 g
22.8 N
|
OK |
| 40 °C | -2.2% |
2.27 kg / 2269.0 g
22.3 N
|
OK |
| 60 °C | -4.4% |
2.22 kg / 2217.9 g
21.8 N
|
|
| 80 °C | -6.6% |
2.17 kg / 2166.9 g
21.3 N
|
|
| 100 °C | -28.8% |
1.65 kg / 1651.8 g
16.2 N
|
MPL 10x10x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.31 kg / 5313 g
52.1 N
4 526 Gs
|
N/A |
| 1 mm |
4.63 kg / 4629 g
45.4 N
5 480 Gs
|
4.17 kg / 4166 g
40.9 N
~0 Gs
|
| 2 mm |
3.89 kg / 3895 g
38.2 N
5 027 Gs
|
3.51 kg / 3505 g
34.4 N
~0 Gs
|
| 3 mm |
3.19 kg / 3189 g
31.3 N
4 549 Gs
|
2.87 kg / 2870 g
28.2 N
~0 Gs
|
| 5 mm |
2.01 kg / 2012 g
19.7 N
3 613 Gs
|
1.81 kg / 1811 g
17.8 N
~0 Gs
|
| 10 mm |
0.55 kg / 548 g
5.4 N
1 886 Gs
|
0.49 kg / 493 g
4.8 N
~0 Gs
|
| 20 mm |
0.05 kg / 50 g
0.5 N
569 Gs
|
0.04 kg / 45 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
60 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 10x10x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 10x10x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.57 km/h
(9.05 m/s)
|
0.09 J | |
| 30 mm |
56.09 km/h
(15.58 m/s)
|
0.27 J | |
| 50 mm |
72.41 km/h
(20.11 m/s)
|
0.46 J | |
| 100 mm |
102.41 km/h
(28.45 m/s)
|
0.91 J |
MPL 10x10x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x10x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 197 Mx | 32.0 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
MPL 10x10x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.32 kg | Standard |
| Woda (dno rzeki) |
2.66 kg
(+0.34 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- o szlifowanej powierzchni kontaktu
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (pomiędzy magnesem a metalem), bowiem nawet bardzo mała przerwa (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Podatność na pękanie
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Limity termiczne
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Potężne pole
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Uwaga medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne destabilizuje działanie czujników w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Uwaga: zadławienie
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem niepowołanych osób.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Unikaj kontaktu w przypadku alergii
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
