MPL 10x10x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020111
GTIN: 5906301811176
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.85 kg / 27.99 N
Indukcja magnetyczna
293.71 mT
Powłoka
[NiCuNi] nikiel
1.414 ZŁ z VAT / szt. + cena za transport
1.150 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie napisz za pomocą
formularz
w sekcji kontakt.
Siłę a także kształt elementów magnetycznych przetestujesz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MPL 10x10x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x10x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020111 |
| GTIN | 5906301811176 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.85 kg / 27.99 N |
| Indukcja magnetyczna ~ ? | 293.71 mT |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - parametry techniczne
Poniższe informacje są rezultat symulacji matematycznej. Wyniki bazują na algorytmach dla klasy NdFeB. Realne parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
MPL 10x10x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3963 Gs
396.3 mT
|
2.85 kg / 2850.0 g
28.0 N
|
średnie ryzyko |
| 1 mm |
3393 Gs
339.3 mT
|
2.09 kg / 2089.1 g
20.5 N
|
średnie ryzyko |
| 2 mm |
2748 Gs
274.8 mT
|
1.37 kg / 1370.3 g
13.4 N
|
niskie ryzyko |
| 5 mm |
943 Gs
94.3 mT
|
0.16 kg / 161.3 g
1.6 N
|
niskie ryzyko |
| 10 mm |
285 Gs
28.5 mT
|
0.01 kg / 14.7 g
0.1 N
|
niskie ryzyko |
| 15 mm |
112 Gs
11.2 mT
|
0.00 kg / 2.3 g
0.0 N
|
niskie ryzyko |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.5 g
0.0 N
|
niskie ryzyko |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MPL 10x10x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.86 kg / 855.0 g
8.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.57 kg / 570.0 g
5.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.29 kg / 285.0 g
2.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.43 kg / 1425.0 g
14.0 N
|
MPL 10x10x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.29 kg / 285.0 g
2.8 N
|
| 1 mm |
|
0.71 kg / 712.5 g
7.0 N
|
| 2 mm |
|
1.43 kg / 1425.0 g
14.0 N
|
| 5 mm |
|
2.85 kg / 2850.0 g
28.0 N
|
| 10 mm |
|
2.85 kg / 2850.0 g
28.0 N
|
MPL 10x10x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.85 kg / 2850.0 g
28.0 N
|
OK |
| 40 °C | -2.2% |
2.79 kg / 2787.3 g
27.3 N
|
OK |
| 60 °C | -4.4% |
2.72 kg / 2724.6 g
26.7 N
|
OK |
| 80 °C | -6.6% |
2.66 kg / 2661.9 g
26.1 N
|
|
| 100 °C | -28.8% |
2.03 kg / 2029.2 g
19.9 N
|
MPL 10x10x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.28 kg / 4275.0 g
41.9 N
|
N/A |
| 2 mm |
2.06 kg / 2055.0 g
20.2 N
|
1.92 kg / 1918.0 g
18.8 N
|
| 5 mm |
0.24 kg / 240.0 g
2.4 N
|
0.22 kg / 224.0 g
2.2 N
|
| 10 mm |
0.02 kg / 15.0 g
0.1 N
|
0.01 kg / 14.0 g
0.1 N
|
| 20 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
| 50 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
MPL 10x10x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 10x10x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
36.01 km/h
(10.00 m/s)
|
0.11 J | |
| 30 mm |
62.17 km/h
(17.27 m/s)
|
0.34 J | |
| 50 mm |
80.26 km/h
(22.29 m/s)
|
0.56 J | |
| 100 mm |
113.50 km/h
(31.53 m/s)
|
1.12 J |
MPL 10x10x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x10x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.85 kg | Standard |
| Woda (dno rzeki) |
3.26 kg
(+0.41 kg Zysk z wyporności)
|
+14.5% |
Inne oferty
Wady i zalety magnesów z neodymu NdFeB.
Należy pamiętać, iż obok wysokiej siły, magnesy te cechują się następującymi zaletami:
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi jedynie ~1% (wg testów).
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Mimo zalet, posiadają też wady:
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
Parametr siły jest rezultatem pomiaru przeprowadzonego w następującej konfiguracji:
- z zastosowaniem podłoża ze miękkiej stali, która służy jako element zamykający obwód
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni kontaktu
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
W rzeczywistych zastosowaniach, rzeczywisty udźwig wynika z szeregu czynników, uszeregowanych od kluczowych:
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, szczelina) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą generować mniejszy udźwig.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
* Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża udźwig.
Bezpieczna praca przy magnesach z neodymem
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Karty i dyski
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Nie wierć w magnesach
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne zakłóca działanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Utrata mocy w cieple
Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Siła zgniatająca
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
Nie lekceważ mocy
Używaj magnesy świadomie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Ryzyko uczulenia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Ważne!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
