MPL 10x10x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020111
GTIN/EAN: 5906301811176
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.32 kg / 22.77 N
Indukcja magnetyczna
293.71 mT / 2937 Gs
Powłoka
[NiCuNi] nikiel
1.414 ZŁ z VAT / szt. + cena za transport
1.150 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie pisz poprzez
formularz
na stronie kontakt.
Siłę a także formę magnesu neodymowego sprawdzisz dzięki naszemu
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Właściwości fizyczne MPL 10x10x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x10x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020111 |
| GTIN/EAN | 5906301811176 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.32 kg / 22.77 N |
| Indukcja magnetyczna ~ ? | 293.71 mT / 2937 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Przedstawione dane stanowią rezultat kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MPL 10x10x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2936 Gs
293.6 mT
|
2.32 kg / 2320.0 g
22.8 N
|
uwaga |
| 1 mm |
2513 Gs
251.3 mT
|
1.70 kg / 1700.6 g
16.7 N
|
niskie ryzyko |
| 2 mm |
2036 Gs
203.6 mT
|
1.12 kg / 1115.5 g
10.9 N
|
niskie ryzyko |
| 3 mm |
1594 Gs
159.4 mT
|
0.68 kg / 683.9 g
6.7 N
|
niskie ryzyko |
| 5 mm |
943 Gs
94.3 mT
|
0.24 kg / 239.3 g
2.3 N
|
niskie ryzyko |
| 10 mm |
285 Gs
28.5 mT
|
0.02 kg / 21.8 g
0.2 N
|
niskie ryzyko |
| 15 mm |
112 Gs
11.2 mT
|
0.00 kg / 3.4 g
0.0 N
|
niskie ryzyko |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.8 g
0.0 N
|
niskie ryzyko |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 10x10x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.46 kg / 464.0 g
4.6 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 340.0 g
3.3 N
|
| 2 mm | Stal (~0.2) |
0.22 kg / 224.0 g
2.2 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 136.0 g
1.3 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 10x10x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 696.0 g
6.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.46 kg / 464.0 g
4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 232.0 g
2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.16 kg / 1160.0 g
11.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 10x10x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 232.0 g
2.3 N
|
| 1 mm |
|
0.58 kg / 580.0 g
5.7 N
|
| 2 mm |
|
1.16 kg / 1160.0 g
11.4 N
|
| 5 mm |
|
2.32 kg / 2320.0 g
22.8 N
|
| 10 mm |
|
2.32 kg / 2320.0 g
22.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 10x10x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.32 kg / 2320.0 g
22.8 N
|
OK |
| 40 °C | -2.2% |
2.27 kg / 2269.0 g
22.3 N
|
OK |
| 60 °C | -4.4% |
2.22 kg / 2217.9 g
21.8 N
|
|
| 80 °C | -6.6% |
2.17 kg / 2166.9 g
21.3 N
|
|
| 100 °C | -28.8% |
1.65 kg / 1651.8 g
16.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 10x10x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.31 kg / 5313 g
52.1 N
4 526 Gs
|
N/A |
| 1 mm |
4.63 kg / 4629 g
45.4 N
5 480 Gs
|
4.17 kg / 4166 g
40.9 N
~0 Gs
|
| 2 mm |
3.89 kg / 3895 g
38.2 N
5 027 Gs
|
3.51 kg / 3505 g
34.4 N
~0 Gs
|
| 3 mm |
3.19 kg / 3189 g
31.3 N
4 549 Gs
|
2.87 kg / 2870 g
28.2 N
~0 Gs
|
| 5 mm |
2.01 kg / 2012 g
19.7 N
3 613 Gs
|
1.81 kg / 1811 g
17.8 N
~0 Gs
|
| 10 mm |
0.55 kg / 548 g
5.4 N
1 886 Gs
|
0.49 kg / 493 g
4.8 N
~0 Gs
|
| 20 mm |
0.05 kg / 50 g
0.5 N
569 Gs
|
0.04 kg / 45 g
0.4 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
60 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 10x10x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 10x10x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.57 km/h
(9.05 m/s)
|
0.09 J | |
| 30 mm |
56.09 km/h
(15.58 m/s)
|
0.27 J | |
| 50 mm |
72.41 km/h
(20.11 m/s)
|
0.46 J | |
| 100 mm |
102.41 km/h
(28.45 m/s)
|
0.91 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 10x10x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 10x10x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 197 Mx | 32.0 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 10x10x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.32 kg | Standard |
| Woda (dno rzeki) |
2.66 kg
(+0.34 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – od czego zależy?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Dystans (między magnesem a blachą), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość stali – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje siłę trzymania.
Zasady BHP dla użytkowników magnesów
Ostrzeżenie dla sercowców
Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może rozregulować pracę implantu.
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Nie dawać dzieciom
Te produkty magnetyczne to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Kruchość materiału
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
Poważne obrażenia
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ryzyko rozmagnesowania
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Nadwrażliwość na metale
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Zakłócenia GPS i telefonów
Silne pole magnetyczne destabilizuje działanie kompasów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
