MPL 10x10x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020111
GTIN/EAN: 5906301811176
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.32 kg / 22.77 N
Indukcja magnetyczna
293.71 mT / 2937 Gs
Powłoka
[NiCuNi] nikiel
1.414 ZŁ z VAT / szt. + cena za transport
1.150 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie pisz za pomocą
formularz zapytania
przez naszą stronę.
Udźwig oraz kształt magnesu neodymowego przetestujesz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja - MPL 10x10x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x10x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020111 |
| GTIN/EAN | 5906301811176 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.32 kg / 22.77 N |
| Indukcja magnetyczna ~ ? | 293.71 mT / 2937 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Poniższe wartości stanowią rezultat symulacji matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 10x10x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2936 Gs
293.6 mT
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
średnie ryzyko |
| 1 mm |
2513 Gs
251.3 mT
|
1.70 kg / 3.75 lbs
1700.6 g / 16.7 N
|
bezpieczny |
| 2 mm |
2036 Gs
203.6 mT
|
1.12 kg / 2.46 lbs
1115.5 g / 10.9 N
|
bezpieczny |
| 3 mm |
1594 Gs
159.4 mT
|
0.68 kg / 1.51 lbs
683.9 g / 6.7 N
|
bezpieczny |
| 5 mm |
943 Gs
94.3 mT
|
0.24 kg / 0.53 lbs
239.3 g / 2.3 N
|
bezpieczny |
| 10 mm |
285 Gs
28.5 mT
|
0.02 kg / 0.05 lbs
21.8 g / 0.2 N
|
bezpieczny |
| 15 mm |
112 Gs
11.2 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
bezpieczny |
| 20 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
bezpieczny |
| 30 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 10x10x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.46 kg / 1.02 lbs
464.0 g / 4.6 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 2 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
224.0 g / 2.2 N
|
| 3 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 10x10x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.46 kg / 1.02 lbs
464.0 g / 4.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.16 kg / 2.56 lbs
1160.0 g / 11.4 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 10x10x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.23 kg / 0.51 lbs
232.0 g / 2.3 N
|
| 1 mm |
|
0.58 kg / 1.28 lbs
580.0 g / 5.7 N
|
| 2 mm |
|
1.16 kg / 2.56 lbs
1160.0 g / 11.4 N
|
| 3 mm |
|
1.74 kg / 3.84 lbs
1740.0 g / 17.1 N
|
| 5 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 10 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 11 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
| 12 mm |
|
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 10x10x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.32 kg / 5.11 lbs
2320.0 g / 22.8 N
|
OK |
| 40 °C | -2.2% |
2.27 kg / 5.00 lbs
2269.0 g / 22.3 N
|
OK |
| 60 °C | -4.4% |
2.22 kg / 4.89 lbs
2217.9 g / 21.8 N
|
|
| 80 °C | -6.6% |
2.17 kg / 4.78 lbs
2166.9 g / 21.3 N
|
|
| 100 °C | -28.8% |
1.65 kg / 3.64 lbs
1651.8 g / 16.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 10x10x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.31 kg / 11.71 lbs
4 526 Gs
|
0.80 kg / 1.76 lbs
797 g / 7.8 N
|
N/A |
| 1 mm |
4.63 kg / 10.20 lbs
5 480 Gs
|
0.69 kg / 1.53 lbs
694 g / 6.8 N
|
4.17 kg / 9.18 lbs
~0 Gs
|
| 2 mm |
3.89 kg / 8.59 lbs
5 027 Gs
|
0.58 kg / 1.29 lbs
584 g / 5.7 N
|
3.51 kg / 7.73 lbs
~0 Gs
|
| 3 mm |
3.19 kg / 7.03 lbs
4 549 Gs
|
0.48 kg / 1.05 lbs
478 g / 4.7 N
|
2.87 kg / 6.33 lbs
~0 Gs
|
| 5 mm |
2.01 kg / 4.44 lbs
3 613 Gs
|
0.30 kg / 0.67 lbs
302 g / 3.0 N
|
1.81 kg / 3.99 lbs
~0 Gs
|
| 10 mm |
0.55 kg / 1.21 lbs
1 886 Gs
|
0.08 kg / 0.18 lbs
82 g / 0.8 N
|
0.49 kg / 1.09 lbs
~0 Gs
|
| 20 mm |
0.05 kg / 0.11 lbs
569 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
60 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 10x10x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 10x10x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.57 km/h
(9.05 m/s)
|
0.09 J | |
| 30 mm |
56.09 km/h
(15.58 m/s)
|
0.27 J | |
| 50 mm |
72.41 km/h
(20.11 m/s)
|
0.46 J | |
| 100 mm |
102.41 km/h
(28.45 m/s)
|
0.91 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 10x10x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 10x10x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 197 Mx | 32.0 µWb |
| Współczynnik Pc | 0.36 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 10x10x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.32 kg | Standard |
| Woda (dno rzeki) |
2.66 kg
(+0.34 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.36
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki powłoce (NiCuNi, Au, Ag) zyskują nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z wykorzystaniem podłoża ze stali niskowęglowej, która służy jako element zamykający obwód
- o przekroju nie mniejszej niż 10 mm
- o wypolerowanej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Magnesy są kruche
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Ryzyko zmiażdżenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Kompas i GPS
Silne pole magnetyczne wpływa negatywnie na działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Maksymalna temperatura
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Nie dawać dzieciom
Bezwzględnie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Zakaz obróbki
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Bezpieczny dystans
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Interferencja medyczna
Osoby z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
