MPL 10x10x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020110
GTIN/EAN: 5906301811169
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.84 kg / 37.71 N
Indukcja magnetyczna
539.91 mT / 5399 Gs
Powłoka
[NiCuNi] nikiel
5.29 ZŁ z VAT / szt. + cena za transport
4.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość korzystając z
formularz zgłoszeniowy
na naszej stronie.
Masę a także budowę magnesów neodymowych skontrolujesz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 10x10x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x10x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020110 |
| GTIN/EAN | 5906301811169 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.84 kg / 37.71 N |
| Indukcja magnetyczna ~ ? | 539.91 mT / 5399 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Niniejsze dane stanowią bezpośredni efekt kalkulacji matematycznej. Wyniki zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 10x10x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5395 Gs
539.5 mT
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
mocny |
| 1 mm |
4423 Gs
442.3 mT
|
2.58 kg / 5.69 lbs
2580.1 g / 25.3 N
|
mocny |
| 2 mm |
3516 Gs
351.6 mT
|
1.63 kg / 3.60 lbs
1631.0 g / 16.0 N
|
bezpieczny |
| 3 mm |
2751 Gs
275.1 mT
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
bezpieczny |
| 5 mm |
1671 Gs
167.1 mT
|
0.37 kg / 0.81 lbs
368.5 g / 3.6 N
|
bezpieczny |
| 10 mm |
562 Gs
56.2 mT
|
0.04 kg / 0.09 lbs
41.7 g / 0.4 N
|
bezpieczny |
| 15 mm |
244 Gs
24.4 mT
|
0.01 kg / 0.02 lbs
7.8 g / 0.1 N
|
bezpieczny |
| 20 mm |
126 Gs
12.6 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
bezpieczny |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
bezpieczny |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 10x10x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.77 kg / 1.69 lbs
768.0 g / 7.5 N
|
| 1 mm | Stal (~0.2) |
0.52 kg / 1.14 lbs
516.0 g / 5.1 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| 3 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 10x10x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.15 kg / 2.54 lbs
1152.0 g / 11.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.77 kg / 1.69 lbs
768.0 g / 7.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 10x10x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 1 mm |
|
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| 2 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 3 mm |
|
2.88 kg / 6.35 lbs
2880.0 g / 28.3 N
|
| 5 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 10 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 11 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 12 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 10x10x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
OK |
| 40 °C | -2.2% |
3.76 kg / 8.28 lbs
3755.5 g / 36.8 N
|
OK |
| 60 °C | -4.4% |
3.67 kg / 8.09 lbs
3671.0 g / 36.0 N
|
OK |
| 80 °C | -6.6% |
3.59 kg / 7.91 lbs
3586.6 g / 35.2 N
|
|
| 100 °C | -28.8% |
2.73 kg / 6.03 lbs
2734.1 g / 26.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 10x10x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.95 kg / 39.56 lbs
5 957 Gs
|
2.69 kg / 5.93 lbs
2692 g / 26.4 N
|
N/A |
| 1 mm |
14.86 kg / 32.77 lbs
9 821 Gs
|
2.23 kg / 4.92 lbs
2230 g / 21.9 N
|
13.38 kg / 29.49 lbs
~0 Gs
|
| 2 mm |
12.06 kg / 26.58 lbs
8 845 Gs
|
1.81 kg / 3.99 lbs
1809 g / 17.7 N
|
10.85 kg / 23.93 lbs
~0 Gs
|
| 3 mm |
9.64 kg / 21.26 lbs
7 909 Gs
|
1.45 kg / 3.19 lbs
1446 g / 14.2 N
|
8.68 kg / 19.13 lbs
~0 Gs
|
| 5 mm |
5.98 kg / 13.18 lbs
6 228 Gs
|
0.90 kg / 1.98 lbs
897 g / 8.8 N
|
5.38 kg / 11.86 lbs
~0 Gs
|
| 10 mm |
1.72 kg / 3.80 lbs
3 343 Gs
|
0.26 kg / 0.57 lbs
258 g / 2.5 N
|
1.55 kg / 3.42 lbs
~0 Gs
|
| 20 mm |
0.20 kg / 0.43 lbs
1 125 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.18 kg / 0.39 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
146 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
92 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 10x10x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 10x10x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.97 km/h
(6.38 m/s)
|
0.15 J | |
| 30 mm |
39.53 km/h
(10.98 m/s)
|
0.45 J | |
| 50 mm |
51.03 km/h
(14.17 m/s)
|
0.75 J | |
| 100 mm |
72.16 km/h
(20.05 m/s)
|
1.51 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 10x10x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 10x10x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 504 Mx | 55.0 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MPL 10x10x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.84 kg | Standard |
| Woda (dno rzeki) |
4.40 kg
(+0.56 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa tylko ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) mają estetyczny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy zerowej szczelinie (brak powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina powietrzna (pomiędzy magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig określano stosując blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
BHP przy magnesach
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Potężne pole
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Rozruszniki serca
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Urazy ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Nie dawać dzieciom
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Zagrożenie dla elektroniki
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Niklowa powłoka a alergia
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
