MPL 10x10x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020110
GTIN: 5906301811169
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.84 kg / 37.71 N
Indukcja magnetyczna
539.91 mT / 5399 Gs
Powłoka
[NiCuNi] nikiel
5.29 ZŁ z VAT / szt. + cena za transport
4.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie daj znać poprzez
formularz zgłoszeniowy
przez naszą stronę.
Masę i formę magnesu neodymowego przetestujesz dzięki naszemu
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 10x10x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 10x10x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020110 |
| GTIN | 5906301811169 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.84 kg / 37.71 N |
| Indukcja magnetyczna ~ ? | 539.91 mT / 5399 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - dane
Przedstawione dane są rezultat kalkulacji fizycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
MPL 10x10x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5395 Gs
539.5 mT
|
3.84 kg / 3840.0 g
37.7 N
|
uwaga |
| 1 mm |
4423 Gs
442.3 mT
|
2.58 kg / 2580.1 g
25.3 N
|
uwaga |
| 2 mm |
3516 Gs
351.6 mT
|
1.63 kg / 1631.0 g
16.0 N
|
słaby uchwyt |
| 3 mm |
2751 Gs
275.1 mT
|
1.00 kg / 998.0 g
9.8 N
|
słaby uchwyt |
| 5 mm |
1671 Gs
167.1 mT
|
0.37 kg / 368.5 g
3.6 N
|
słaby uchwyt |
| 10 mm |
562 Gs
56.2 mT
|
0.04 kg / 41.7 g
0.4 N
|
słaby uchwyt |
| 15 mm |
244 Gs
24.4 mT
|
0.01 kg / 7.8 g
0.1 N
|
słaby uchwyt |
| 20 mm |
126 Gs
12.6 mT
|
0.00 kg / 2.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MPL 10x10x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.77 kg / 768.0 g
7.5 N
|
| 1 mm | Stal (~0.2) |
0.52 kg / 516.0 g
5.1 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 326.0 g
3.2 N
|
| 3 mm | Stal (~0.2) |
0.20 kg / 200.0 g
2.0 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 10x10x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.15 kg / 1152.0 g
11.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.77 kg / 768.0 g
7.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.38 kg / 384.0 g
3.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.92 kg / 1920.0 g
18.8 N
|
MPL 10x10x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.38 kg / 384.0 g
3.8 N
|
| 1 mm |
|
0.96 kg / 960.0 g
9.4 N
|
| 2 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
| 5 mm |
|
3.84 kg / 3840.0 g
37.7 N
|
| 10 mm |
|
3.84 kg / 3840.0 g
37.7 N
|
MPL 10x10x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.84 kg / 3840.0 g
37.7 N
|
OK |
| 40 °C | -2.2% |
3.76 kg / 3755.5 g
36.8 N
|
OK |
| 60 °C | -4.4% |
3.67 kg / 3671.0 g
36.0 N
|
OK |
| 80 °C | -6.6% |
3.59 kg / 3586.6 g
35.2 N
|
|
| 100 °C | -28.8% |
2.73 kg / 2734.1 g
26.8 N
|
MPL 10x10x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.95 kg / 17946 g
176.1 N
5 957 Gs
|
N/A |
| 1 mm |
14.86 kg / 14865 g
145.8 N
9 821 Gs
|
13.38 kg / 13378 g
131.2 N
~0 Gs
|
| 2 mm |
12.06 kg / 12058 g
118.3 N
8 845 Gs
|
10.85 kg / 10852 g
106.5 N
~0 Gs
|
| 3 mm |
9.64 kg / 9641 g
94.6 N
7 909 Gs
|
8.68 kg / 8677 g
85.1 N
~0 Gs
|
| 5 mm |
5.98 kg / 5978 g
58.6 N
6 228 Gs
|
5.38 kg / 5380 g
52.8 N
~0 Gs
|
| 10 mm |
1.72 kg / 1722 g
16.9 N
3 343 Gs
|
1.55 kg / 1550 g
15.2 N
~0 Gs
|
| 20 mm |
0.20 kg / 195 g
1.9 N
1 125 Gs
|
0.18 kg / 176 g
1.7 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
146 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MPL 10x10x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MPL 10x10x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.97 km/h
(6.38 m/s)
|
0.15 J | |
| 30 mm |
39.53 km/h
(10.98 m/s)
|
0.45 J | |
| 50 mm |
51.03 km/h
(14.17 m/s)
|
0.75 J | |
| 100 mm |
72.16 km/h
(20.05 m/s)
|
1.51 J |
MPL 10x10x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 10x10x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 504 Mx | 55.0 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
MPL 10x10x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.84 kg | Standard |
| Woda (dno rzeki) |
4.40 kg
(+0.56 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Efektywność a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
Inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- z zastosowaniem blachy ze stali niskowęglowej, która służy jako element zamykający obwód
- o przekroju wynoszącej minimum 10 mm
- o wypolerowanej powierzchni styku
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia pokojowej
Praktyczne aspekty udźwigu – czynniki
- Odstęp (pomiędzy magnesem a metalem), gdyż nawet niewielka przerwa (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość stali – za chuda blacha nie przyjmuje całego pola, przez co część strumienia jest tracona w powietrzu.
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe obniżają przenikalność magnetyczną i udźwig.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Ochrona oczu
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Dla uczulonych
Pewna grupa użytkowników wykazuje alergię kontaktową na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może powodować wysypkę. Sugerujemy stosowanie rękawic bezlateksowych.
Niebezpieczeństwo dla rozruszników
Pacjenci z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.
Potężne pole
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Uszkodzenia ciała
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
Nie dawać dzieciom
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
