MPL 10x10x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020110
GTIN/EAN: 5906301811169
Długość
10 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.84 kg / 37.71 N
Indukcja magnetyczna
539.91 mT / 5399 Gs
Powłoka
[NiCuNi] nikiel
5.29 ZŁ z VAT / szt. + cena za transport
4.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo skontaktuj się przez
formularz zgłoszeniowy
na stronie kontakt.
Właściwości i budowę magnesu neodymowego skontrolujesz w naszym
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry produktu - MPL 10x10x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 10x10x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020110 |
| GTIN/EAN | 5906301811169 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 10 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.84 kg / 37.71 N |
| Indukcja magnetyczna ~ ? | 539.91 mT / 5399 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Poniższe wartości są bezpośredni efekt analizy fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MPL 10x10x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5395 Gs
539.5 mT
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
średnie ryzyko |
| 1 mm |
4423 Gs
442.3 mT
|
2.58 kg / 5.69 lbs
2580.1 g / 25.3 N
|
średnie ryzyko |
| 2 mm |
3516 Gs
351.6 mT
|
1.63 kg / 3.60 lbs
1631.0 g / 16.0 N
|
słaby uchwyt |
| 3 mm |
2751 Gs
275.1 mT
|
1.00 kg / 2.20 lbs
998.0 g / 9.8 N
|
słaby uchwyt |
| 5 mm |
1671 Gs
167.1 mT
|
0.37 kg / 0.81 lbs
368.5 g / 3.6 N
|
słaby uchwyt |
| 10 mm |
562 Gs
56.2 mT
|
0.04 kg / 0.09 lbs
41.7 g / 0.4 N
|
słaby uchwyt |
| 15 mm |
244 Gs
24.4 mT
|
0.01 kg / 0.02 lbs
7.8 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
126 Gs
12.6 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 10x10x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.77 kg / 1.69 lbs
768.0 g / 7.5 N
|
| 1 mm | Stal (~0.2) |
0.52 kg / 1.14 lbs
516.0 g / 5.1 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| 3 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 10x10x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.15 kg / 2.54 lbs
1152.0 g / 11.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.77 kg / 1.69 lbs
768.0 g / 7.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 10x10x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 1 mm |
|
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| 2 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 3 mm |
|
2.88 kg / 6.35 lbs
2880.0 g / 28.3 N
|
| 5 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 10 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 11 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
| 12 mm |
|
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 10x10x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.84 kg / 8.47 lbs
3840.0 g / 37.7 N
|
OK |
| 40 °C | -2.2% |
3.76 kg / 8.28 lbs
3755.5 g / 36.8 N
|
OK |
| 60 °C | -4.4% |
3.67 kg / 8.09 lbs
3671.0 g / 36.0 N
|
OK |
| 80 °C | -6.6% |
3.59 kg / 7.91 lbs
3586.6 g / 35.2 N
|
|
| 100 °C | -28.8% |
2.73 kg / 6.03 lbs
2734.1 g / 26.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 10x10x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.95 kg / 39.56 lbs
5 957 Gs
|
2.69 kg / 5.93 lbs
2692 g / 26.4 N
|
N/A |
| 1 mm |
14.86 kg / 32.77 lbs
9 821 Gs
|
2.23 kg / 4.92 lbs
2230 g / 21.9 N
|
13.38 kg / 29.49 lbs
~0 Gs
|
| 2 mm |
12.06 kg / 26.58 lbs
8 845 Gs
|
1.81 kg / 3.99 lbs
1809 g / 17.7 N
|
10.85 kg / 23.93 lbs
~0 Gs
|
| 3 mm |
9.64 kg / 21.26 lbs
7 909 Gs
|
1.45 kg / 3.19 lbs
1446 g / 14.2 N
|
8.68 kg / 19.13 lbs
~0 Gs
|
| 5 mm |
5.98 kg / 13.18 lbs
6 228 Gs
|
0.90 kg / 1.98 lbs
897 g / 8.8 N
|
5.38 kg / 11.86 lbs
~0 Gs
|
| 10 mm |
1.72 kg / 3.80 lbs
3 343 Gs
|
0.26 kg / 0.57 lbs
258 g / 2.5 N
|
1.55 kg / 3.42 lbs
~0 Gs
|
| 20 mm |
0.20 kg / 0.43 lbs
1 125 Gs
|
0.03 kg / 0.06 lbs
29 g / 0.3 N
|
0.18 kg / 0.39 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
146 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
92 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 10x10x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 10x10x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.97 km/h
(6.38 m/s)
|
0.15 J | |
| 30 mm |
39.53 km/h
(10.98 m/s)
|
0.45 J | |
| 50 mm |
51.03 km/h
(14.17 m/s)
|
0.75 J | |
| 100 mm |
72.16 km/h
(20.05 m/s)
|
1.51 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 10x10x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 10x10x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 504 Mx | 55.0 µWb |
| Współczynnik Pc | 0.84 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MPL 10x10x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.84 kg | Standard |
| Woda (dno rzeki) |
4.40 kg
(+0.56 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.84
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- z użyciem blachy ze miękkiej stali, pełniącej rolę zwora magnetyczna
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina – obecność ciała obcego (farba, brud, powietrze) działa jak izolator, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między magnesem, a blachą zmniejsza udźwig.
BHP przy magnesach
Dla uczulonych
Niektóre osoby posiada uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może powodować silną reakcję alergiczną. Sugerujemy używanie rękawiczek ochronnych.
Tylko dla dorosłych
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Wpływ na zdrowie
Pacjenci z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
Potężne pole
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Zagrożenie zapłonem
Pył powstający podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Nośniki danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Łamliwość magnesów
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Poważne obrażenia
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
