MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030333
GTIN: 5906301812272
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.65 kg / 65.21 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
7.75 ZŁ z VAT / szt. + cena za transport
6.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie pisz korzystając z
formularz zapytania
na stronie kontakt.
Siłę oraz wygląd magnesu neodymowego obliczysz u nas w
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030333 |
| GTIN | 5906301812272 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.65 kg / 65.21 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt symulacji matematycznej. Wyniki bazują na algorytmach dla klasy NdFeB. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
MP 20x8/4x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2424 Gs
242.4 mT
|
6.65 kg / 6650.0 g
65.2 N
|
uwaga |
| 1 mm |
2265 Gs
226.5 mT
|
5.81 kg / 5807.9 g
57.0 N
|
uwaga |
| 2 mm |
2070 Gs
207.0 mT
|
4.85 kg / 4851.0 g
47.6 N
|
uwaga |
| 3 mm |
1858 Gs
185.8 mT
|
3.91 kg / 3906.5 g
38.3 N
|
uwaga |
| 5 mm |
1437 Gs
143.7 mT
|
2.34 kg / 2338.7 g
22.9 N
|
uwaga |
| 10 mm |
691 Gs
69.1 mT
|
0.54 kg / 540.5 g
5.3 N
|
niskie ryzyko |
| 15 mm |
343 Gs
34.3 mT
|
0.13 kg / 133.3 g
1.3 N
|
niskie ryzyko |
| 20 mm |
186 Gs
18.6 mT
|
0.04 kg / 39.3 g
0.4 N
|
niskie ryzyko |
| 30 mm |
70 Gs
7.0 mT
|
0.01 kg / 5.5 g
0.1 N
|
niskie ryzyko |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.4 g
0.0 N
|
niskie ryzyko |
MP 20x8/4x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.33 kg / 1330.0 g
13.0 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 1162.0 g
11.4 N
|
| 2 mm | Stal (~0.2) |
0.97 kg / 970.0 g
9.5 N
|
| 3 mm | Stal (~0.2) |
0.78 kg / 782.0 g
7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 468.0 g
4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 20x8/4x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.00 kg / 1995.0 g
19.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.33 kg / 1330.0 g
13.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 665.0 g
6.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.33 kg / 3325.0 g
32.6 N
|
MP 20x8/4x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 665.0 g
6.5 N
|
| 1 mm |
|
1.66 kg / 1662.5 g
16.3 N
|
| 2 mm |
|
3.33 kg / 3325.0 g
32.6 N
|
| 5 mm |
|
6.65 kg / 6650.0 g
65.2 N
|
| 10 mm |
|
6.65 kg / 6650.0 g
65.2 N
|
MP 20x8/4x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.65 kg / 6650.0 g
65.2 N
|
OK |
| 40 °C | -2.2% |
6.50 kg / 6503.7 g
63.8 N
|
OK |
| 60 °C | -4.4% |
6.36 kg / 6357.4 g
62.4 N
|
|
| 80 °C | -6.6% |
6.21 kg / 6211.1 g
60.9 N
|
|
| 100 °C | -28.8% |
4.73 kg / 4734.8 g
46.4 N
|
MP 20x8/4x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
9.28 kg / 9284 g
91.1 N
4 012 Gs
|
N/A |
| 1 mm |
8.73 kg / 8732 g
85.7 N
4 701 Gs
|
7.86 kg / 7859 g
77.1 N
~0 Gs
|
| 2 mm |
8.11 kg / 8108 g
79.5 N
4 530 Gs
|
7.30 kg / 7297 g
71.6 N
~0 Gs
|
| 3 mm |
7.45 kg / 7448 g
73.1 N
4 342 Gs
|
6.70 kg / 6703 g
65.8 N
~0 Gs
|
| 5 mm |
6.10 kg / 6102 g
59.9 N
3 930 Gs
|
5.49 kg / 5492 g
53.9 N
~0 Gs
|
| 10 mm |
3.27 kg / 3265 g
32.0 N
2 875 Gs
|
2.94 kg / 2939 g
28.8 N
~0 Gs
|
| 20 mm |
0.75 kg / 755 g
7.4 N
1 382 Gs
|
0.68 kg / 679 g
6.7 N
~0 Gs
|
| 50 mm |
0.02 kg / 19 g
0.2 N
220 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
MP 20x8/4x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MP 20x8/4x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.67 km/h
(7.13 m/s)
|
0.29 J | |
| 30 mm |
42.38 km/h
(11.77 m/s)
|
0.78 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.30 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.61 J |
MP 20x8/4x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 20x8/4x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 218 Mx | 72.2 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
MP 20x8/4x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.65 kg | Standard |
| Woda (dno rzeki) |
7.61 kg
(+0.96 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów NdFeB.
Oprócz niezwykłą mocą, magnesy typu NdFeB wnoszą wiele innych atutów::
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Warto znać też słabe strony magnesów neodymowych:
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Optymalny udźwig magnesu neodymowego – od czego zależy?
Moc magnesu została wyznaczona dla najkorzystniejszych warunków, zakładającej:
- z wykorzystaniem płyty ze miękkiej stali, działającej jako zwora magnetyczna
- o przekroju przynajmniej 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
W praktyce, realna moc zależy od wielu zmiennych, uszeregowanych od najważniejszych:
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
* Udźwig mierzono stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą zmniejsza udźwig.
Ostrzeżenia
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Nie dawać dzieciom
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Kruchość materiału
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Utrata mocy w cieple
Typowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Bezpieczny dystans
Ekstremalne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Dla uczulonych
Niektóre osoby posiada nadwrażliwość na nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Rekomendujemy noszenie rękawic bezlateksowych.
Siła zgniatająca
Bloki magnetyczne mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Uwaga!
Szukasz szczegółów? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
