MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030333
GTIN/EAN: 5906301812272
Średnica
20 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.65 kg / 65.21 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
7.75 ZŁ z VAT / szt. + cena za transport
6.30 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo zostaw wiadomość przez
formularz
na naszej stronie.
Udźwig oraz budowę magnesów neodymowych obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 20x8/4x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030333 |
| GTIN/EAN | 5906301812272 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 20 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.65 kg / 65.21 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Poniższe informacje są bezpośredni efekt analizy matematycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 20x8/4x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2424 Gs
242.4 mT
|
6.65 kg / 6650.0 g
65.2 N
|
uwaga |
| 1 mm |
2265 Gs
226.5 mT
|
5.81 kg / 5807.9 g
57.0 N
|
uwaga |
| 2 mm |
2070 Gs
207.0 mT
|
4.85 kg / 4851.0 g
47.6 N
|
uwaga |
| 3 mm |
1858 Gs
185.8 mT
|
3.91 kg / 3906.5 g
38.3 N
|
uwaga |
| 5 mm |
1437 Gs
143.7 mT
|
2.34 kg / 2338.7 g
22.9 N
|
uwaga |
| 10 mm |
691 Gs
69.1 mT
|
0.54 kg / 540.5 g
5.3 N
|
niskie ryzyko |
| 15 mm |
343 Gs
34.3 mT
|
0.13 kg / 133.3 g
1.3 N
|
niskie ryzyko |
| 20 mm |
186 Gs
18.6 mT
|
0.04 kg / 39.3 g
0.4 N
|
niskie ryzyko |
| 30 mm |
70 Gs
7.0 mT
|
0.01 kg / 5.5 g
0.1 N
|
niskie ryzyko |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.4 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 20x8/4x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.33 kg / 1330.0 g
13.0 N
|
| 1 mm | Stal (~0.2) |
1.16 kg / 1162.0 g
11.4 N
|
| 2 mm | Stal (~0.2) |
0.97 kg / 970.0 g
9.5 N
|
| 3 mm | Stal (~0.2) |
0.78 kg / 782.0 g
7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 468.0 g
4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 20x8/4x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.00 kg / 1995.0 g
19.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.33 kg / 1330.0 g
13.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 665.0 g
6.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.33 kg / 3325.0 g
32.6 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MP 20x8/4x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 665.0 g
6.5 N
|
| 1 mm |
|
1.66 kg / 1662.5 g
16.3 N
|
| 2 mm |
|
3.33 kg / 3325.0 g
32.6 N
|
| 5 mm |
|
6.65 kg / 6650.0 g
65.2 N
|
| 10 mm |
|
6.65 kg / 6650.0 g
65.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 20x8/4x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.65 kg / 6650.0 g
65.2 N
|
OK |
| 40 °C | -2.2% |
6.50 kg / 6503.7 g
63.8 N
|
OK |
| 60 °C | -4.4% |
6.36 kg / 6357.4 g
62.4 N
|
|
| 80 °C | -6.6% |
6.21 kg / 6211.1 g
60.9 N
|
|
| 100 °C | -28.8% |
4.73 kg / 4734.8 g
46.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MP 20x8/4x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
9.28 kg / 9284 g
91.1 N
4 012 Gs
|
N/A |
| 1 mm |
8.73 kg / 8732 g
85.7 N
4 701 Gs
|
7.86 kg / 7859 g
77.1 N
~0 Gs
|
| 2 mm |
8.11 kg / 8108 g
79.5 N
4 530 Gs
|
7.30 kg / 7297 g
71.6 N
~0 Gs
|
| 3 mm |
7.45 kg / 7448 g
73.1 N
4 342 Gs
|
6.70 kg / 6703 g
65.8 N
~0 Gs
|
| 5 mm |
6.10 kg / 6102 g
59.9 N
3 930 Gs
|
5.49 kg / 5492 g
53.9 N
~0 Gs
|
| 10 mm |
3.27 kg / 3265 g
32.0 N
2 875 Gs
|
2.94 kg / 2939 g
28.8 N
~0 Gs
|
| 20 mm |
0.75 kg / 755 g
7.4 N
1 382 Gs
|
0.68 kg / 679 g
6.7 N
~0 Gs
|
| 50 mm |
0.02 kg / 19 g
0.2 N
220 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MP 20x8/4x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 20x8/4x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.67 km/h
(7.13 m/s)
|
0.29 J | |
| 30 mm |
42.38 km/h
(11.77 m/s)
|
0.78 J | |
| 50 mm |
54.68 km/h
(15.19 m/s)
|
1.30 J | |
| 100 mm |
77.33 km/h
(21.48 m/s)
|
2.61 J |
Tabela 9: Parametry powłoki (trwałość)
MP 20x8/4x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MP 20x8/4x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 218 Mx | 72.2 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MP 20x8/4x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.65 kg | Standard |
| Woda (dno rzeki) |
7.61 kg
(+0.96 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Ograniczenia
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju wynoszącej minimum 10 mm
- o wypolerowanej powierzchni kontaktu
- przy zerowej szczelinie (bez powłok)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig mierzono używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Zagrożenie wybuchem pyłu
Proszek generowany podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Produkt nie dla dzieci
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Łamliwość magnesów
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Nie zbliżaj do komputera
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Temperatura pracy
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Smartfony i tablety
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Niklowa powłoka a alergia
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Zagrożenie fizyczne
Silne magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
Zagrożenie życia
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Zasady obsługi
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
