MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030250
GTIN: 5906301812265
Średnica
30 mm [±0,1 mm]
Średnica wewnętrzna Ø
7/3 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
15.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.64 kg / 35.69 N
Indukcja magnetyczna
121.58 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
6.84 ZŁ z VAT / szt. + cena za transport
5.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz lepszą cenę?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo pisz przez
nasz formularz online
na naszej stronie.
Parametry i wygląd magnesu wyliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 30x7/3x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030250 |
| GTIN | 5906301812265 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 30 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 7/3 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 15.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.64 kg / 35.69 N |
| Indukcja magnetyczna ~ ? | 121.58 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione wartości stanowią bezpośredni efekt analizy fizycznej. Wyniki oparte są na modelach dla klasy NdFeB. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
MP 30x7/3x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1039 Gs
103.9 mT
|
3.64 kg / 3640.0 g
35.7 N
|
średnie ryzyko |
| 1 mm |
1015 Gs
101.5 mT
|
3.48 kg / 3477.6 g
34.1 N
|
średnie ryzyko |
| 2 mm |
980 Gs
98.0 mT
|
3.24 kg / 3240.7 g
31.8 N
|
średnie ryzyko |
| 3 mm |
936 Gs
93.6 mT
|
2.95 kg / 2951.6 g
29.0 N
|
średnie ryzyko |
| 5 mm |
827 Gs
82.7 mT
|
2.31 kg / 2305.8 g
22.6 N
|
średnie ryzyko |
| 10 mm |
539 Gs
53.9 mT
|
0.98 kg / 981.0 g
9.6 N
|
bezpieczny |
| 15 mm |
329 Gs
32.9 mT
|
0.37 kg / 365.1 g
3.6 N
|
bezpieczny |
| 20 mm |
202 Gs
20.2 mT
|
0.14 kg / 137.9 g
1.4 N
|
bezpieczny |
| 30 mm |
85 Gs
8.5 mT
|
0.02 kg / 24.6 g
0.2 N
|
bezpieczny |
| 50 mm |
23 Gs
2.3 mT
|
0.00 kg / 1.8 g
0.0 N
|
bezpieczny |
MP 30x7/3x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.73 kg / 728.0 g
7.1 N
|
| 1 mm | Stal (~0.2) |
0.70 kg / 696.0 g
6.8 N
|
| 2 mm | Stal (~0.2) |
0.65 kg / 648.0 g
6.4 N
|
| 3 mm | Stal (~0.2) |
0.59 kg / 590.0 g
5.8 N
|
| 5 mm | Stal (~0.2) |
0.46 kg / 462.0 g
4.5 N
|
| 10 mm | Stal (~0.2) |
0.20 kg / 196.0 g
1.9 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MP 30x7/3x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.09 kg / 1092.0 g
10.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.73 kg / 728.0 g
7.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.36 kg / 364.0 g
3.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.82 kg / 1820.0 g
17.9 N
|
MP 30x7/3x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.36 kg / 364.0 g
3.6 N
|
| 1 mm |
|
0.91 kg / 910.0 g
8.9 N
|
| 2 mm |
|
1.82 kg / 1820.0 g
17.9 N
|
| 5 mm |
|
3.64 kg / 3640.0 g
35.7 N
|
| 10 mm |
|
3.64 kg / 3640.0 g
35.7 N
|
MP 30x7/3x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.64 kg / 3640.0 g
35.7 N
|
OK |
| 40 °C | -2.2% |
3.56 kg / 3559.9 g
34.9 N
|
OK |
| 60 °C | -4.4% |
3.48 kg / 3479.8 g
34.1 N
|
|
| 80 °C | -6.6% |
3.40 kg / 3399.8 g
33.4 N
|
|
| 100 °C | -28.8% |
2.59 kg / 2591.7 g
25.4 N
|
MP 30x7/3x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.96 kg / 3958 g
38.8 N
1 995 Gs
|
N/A |
| 1 mm |
3.88 kg / 3882 g
38.1 N
2 058 Gs
|
3.49 kg / 3493 g
34.3 N
~0 Gs
|
| 2 mm |
3.78 kg / 3781 g
37.1 N
2 031 Gs
|
3.40 kg / 3403 g
33.4 N
~0 Gs
|
| 3 mm |
3.66 kg / 3661 g
35.9 N
1 998 Gs
|
3.30 kg / 3295 g
32.3 N
~0 Gs
|
| 5 mm |
3.37 kg / 3372 g
33.1 N
1 918 Gs
|
3.04 kg / 3035 g
29.8 N
~0 Gs
|
| 10 mm |
2.51 kg / 2507 g
24.6 N
1 654 Gs
|
2.26 kg / 2257 g
22.1 N
~0 Gs
|
| 20 mm |
1.07 kg / 1067 g
10.5 N
1 079 Gs
|
0.96 kg / 960 g
9.4 N
~0 Gs
|
| 50 mm |
0.06 kg / 61 g
0.6 N
258 Gs
|
0.05 kg / 55 g
0.5 N
~0 Gs
|
MP 30x7/3x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MP 30x7/3x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.73 km/h
(4.92 m/s)
|
0.19 J | |
| 30 mm |
26.67 km/h
(7.41 m/s)
|
0.43 J | |
| 50 mm |
34.29 km/h
(9.53 m/s)
|
0.71 J | |
| 100 mm |
48.48 km/h
(13.47 m/s)
|
1.43 J |
MP 30x7/3x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 30x7/3x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 395 Mx | 84.0 µWb |
| Współczynnik Pc | 0.13 | Niski (Płaski) |
MP 30x7/3x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.64 kg | Standard |
| Woda (dno rzeki) |
4.17 kg
(+0.53 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne propozycje
Zalety i wady magnesów neodymowych NdFeB.
Neodymy to nie tylko moc przyciągania, ale także inne kluczowe właściwości, w tym::
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi zaledwie ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Mimo zalet, posiadają też wady:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
Deklarowana siła magnesu reprezentuje siły granicznej, którą zmierzono w środowisku optymalnym, co oznacza test:
- z wykorzystaniem blachy ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- której grubość sięga przynajmniej 10 mm
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (brak powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
Na efektywny udźwig wpływają parametry środowiska pracy, takie jak (od priorytetowych):
- Dystans (między magnesem a metalem), gdyż nawet bardzo mała przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
* Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje siłę trzymania.
Zalety i wady magnesów neodymowych NdFeB.
Neodymy to nie tylko moc przyciągania, ale także inne kluczowe właściwości, w tym::
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi zaledwie ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Mimo zalet, posiadają też wady:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
Deklarowana siła magnesu reprezentuje siły granicznej, którą zmierzono w środowisku optymalnym, co oznacza test:
- z wykorzystaniem blachy ze stali niskowęglowej, pełniącej rolę zwora magnetyczna
- której grubość sięga przynajmniej 10 mm
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (brak powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
Na efektywny udźwig wpływają parametry środowiska pracy, takie jak (od priorytetowych):
- Dystans (między magnesem a metalem), gdyż nawet bardzo mała przerwa (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
* Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Potężne pole
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Samozapłon
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Przegrzanie magnesu
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Reakcje alergiczne
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Implanty medyczne
Pacjenci z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Podatność na pękanie
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Pole magnetyczne a elektronika
Bardzo silne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Zachowaj ostrożność!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
