MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030248
GTIN/EAN: 5906301812241
Średnica
36.2 mm [±0,1 mm]
Średnica wewnętrzna Ø
11/6 mm [±0,1 mm]
Wysokość
7.5 mm [±0,1 mm]
Waga
56.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
17.12 kg / 167.95 N
Indukcja magnetyczna
237.29 mT / 2373 Gs
Powłoka
[NiCuNi] nikiel
35.01 ZŁ z VAT / szt. + cena za transport
28.46 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo zostaw wiadomość korzystając z
nasz formularz online
w sekcji kontakt.
Moc a także formę magnesu skontrolujesz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 36.2x11/6x7.5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030248 |
| GTIN/EAN | 5906301812241 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 36.2 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 11/6 mm [±0,1 mm] |
| Wysokość | 7.5 mm [±0,1 mm] |
| Waga | 56.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 17.12 kg / 167.95 N |
| Indukcja magnetyczna ~ ? | 237.29 mT / 2373 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione dane stanowią rezultat symulacji fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MP 36.2x11/6x7.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2059 Gs
205.9 mT
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
niebezpieczny! |
| 1 mm |
1997 Gs
199.7 mT
|
16.11 kg / 35.52 lbs
16110.1 g / 158.0 N
|
niebezpieczny! |
| 2 mm |
1923 Gs
192.3 mT
|
14.93 kg / 32.91 lbs
14925.7 g / 146.4 N
|
niebezpieczny! |
| 3 mm |
1838 Gs
183.8 mT
|
13.64 kg / 30.06 lbs
13636.4 g / 133.8 N
|
niebezpieczny! |
| 5 mm |
1648 Gs
164.8 mT
|
10.97 kg / 24.18 lbs
10968.0 g / 107.6 N
|
niebezpieczny! |
| 10 mm |
1161 Gs
116.1 mT
|
5.44 kg / 12.00 lbs
5444.8 g / 53.4 N
|
mocny |
| 15 mm |
775 Gs
77.5 mT
|
2.43 kg / 5.35 lbs
2427.5 g / 23.8 N
|
mocny |
| 20 mm |
515 Gs
51.5 mT
|
1.07 kg / 2.36 lbs
1071.1 g / 10.5 N
|
bezpieczny |
| 30 mm |
242 Gs
24.2 mT
|
0.24 kg / 0.52 lbs
236.8 g / 2.3 N
|
bezpieczny |
| 50 mm |
73 Gs
7.3 mT
|
0.02 kg / 0.05 lbs
21.8 g / 0.2 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MP 36.2x11/6x7.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| 1 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3222.0 g / 31.6 N
|
| 2 mm | Stal (~0.2) |
2.99 kg / 6.58 lbs
2986.0 g / 29.3 N
|
| 3 mm | Stal (~0.2) |
2.73 kg / 6.01 lbs
2728.0 g / 26.8 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.84 lbs
2194.0 g / 21.5 N
|
| 10 mm | Stal (~0.2) |
1.09 kg / 2.40 lbs
1088.0 g / 10.7 N
|
| 15 mm | Stal (~0.2) |
0.49 kg / 1.07 lbs
486.0 g / 4.8 N
|
| 20 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
214.0 g / 2.1 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 36.2x11/6x7.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.14 kg / 11.32 lbs
5136.0 g / 50.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.71 kg / 3.77 lbs
1712.0 g / 16.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
8.56 kg / 18.87 lbs
8560.0 g / 84.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 36.2x11/6x7.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.86 kg / 1.89 lbs
856.0 g / 8.4 N
|
| 1 mm |
|
2.14 kg / 4.72 lbs
2140.0 g / 21.0 N
|
| 2 mm |
|
4.28 kg / 9.44 lbs
4280.0 g / 42.0 N
|
| 3 mm |
|
6.42 kg / 14.15 lbs
6420.0 g / 63.0 N
|
| 5 mm |
|
10.70 kg / 23.59 lbs
10700.0 g / 105.0 N
|
| 10 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
| 11 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
| 12 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MP 36.2x11/6x7.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
OK |
| 40 °C | -2.2% |
16.74 kg / 36.91 lbs
16743.4 g / 164.3 N
|
OK |
| 60 °C | -4.4% |
16.37 kg / 36.08 lbs
16366.7 g / 160.6 N
|
|
| 80 °C | -6.6% |
15.99 kg / 35.25 lbs
15990.1 g / 156.9 N
|
|
| 100 °C | -28.8% |
12.19 kg / 26.87 lbs
12189.4 g / 119.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 36.2x11/6x7.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.24 kg / 49.03 lbs
3 569 Gs
|
3.34 kg / 7.35 lbs
3336 g / 32.7 N
|
N/A |
| 1 mm |
21.62 kg / 47.67 lbs
4 061 Gs
|
3.24 kg / 7.15 lbs
3243 g / 31.8 N
|
19.46 kg / 42.90 lbs
~0 Gs
|
| 2 mm |
20.93 kg / 46.14 lbs
3 995 Gs
|
3.14 kg / 6.92 lbs
3139 g / 30.8 N
|
18.84 kg / 41.52 lbs
~0 Gs
|
| 3 mm |
20.18 kg / 44.49 lbs
3 923 Gs
|
3.03 kg / 6.67 lbs
3027 g / 29.7 N
|
18.16 kg / 40.04 lbs
~0 Gs
|
| 5 mm |
18.56 kg / 40.93 lbs
3 763 Gs
|
2.78 kg / 6.14 lbs
2785 g / 27.3 N
|
16.71 kg / 36.83 lbs
~0 Gs
|
| 10 mm |
14.25 kg / 31.41 lbs
3 296 Gs
|
2.14 kg / 4.71 lbs
2137 g / 21.0 N
|
12.82 kg / 28.27 lbs
~0 Gs
|
| 20 mm |
7.07 kg / 15.59 lbs
2 322 Gs
|
1.06 kg / 2.34 lbs
1061 g / 10.4 N
|
6.37 kg / 14.03 lbs
~0 Gs
|
| 50 mm |
0.64 kg / 1.40 lbs
697 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
0.57 kg / 1.26 lbs
~0 Gs
|
| 60 mm |
0.31 kg / 0.68 lbs
484 Gs
|
0.05 kg / 0.10 lbs
46 g / 0.5 N
|
0.28 kg / 0.61 lbs
~0 Gs
|
| 70 mm |
0.16 kg / 0.35 lbs
346 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.19 lbs
254 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.11 lbs
191 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.06 lbs
147 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MP 36.2x11/6x7.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 36.2x11/6x7.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.79 km/h
(5.78 m/s)
|
0.94 J | |
| 30 mm |
30.72 km/h
(8.53 m/s)
|
2.05 J | |
| 50 mm |
39.36 km/h
(10.93 m/s)
|
3.36 J | |
| 100 mm |
55.61 km/h
(15.45 m/s)
|
6.72 J |
Tabela 9: Odporność na korozję
MP 36.2x11/6x7.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 36.2x11/6x7.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 21 038 Mx | 210.4 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MP 36.2x11/6x7.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 17.12 kg | Standard |
| Woda (dno rzeki) |
19.60 kg
(+2.48 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (nikiel, złoto, srebro) zyskują nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- o wypolerowanej powierzchni styku
- przy bezpośrednim styku (bez zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda blacha nie przyjmuje całego pola, przez co część mocy marnuje się w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą obniża udźwig.
Zasady BHP dla użytkowników magnesów
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Zagrożenie dla najmłodszych
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Łatwopalność
Proszek powstający podczas obróbki magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Ostrożność wymagana
Używaj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Łamliwość magnesów
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Uczulenie na powłokę
Pewna grupa użytkowników posiada alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Zalecamy używanie rękawiczek ochronnych.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Uszkodzenia ciała
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Kompas i GPS
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
