MP 8x6/3.5x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030206
GTIN/EAN: 5906301812234
Średnica
8 mm [±0,1 mm]
Średnica wewnętrzna Ø
6/3.5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.91 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.37 kg / 13.48 N
Indukcja magnetyczna
371.53 mT / 3715 Gs
Powłoka
[NiCuNi] nikiel
0.701 ZŁ z VAT / szt. + cena za transport
0.570 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub skontaktuj się przez
formularz kontaktowy
na naszej stronie.
Właściwości a także budowę magnesów neodymowych wyliczysz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MP 8x6/3.5x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 8x6/3.5x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030206 |
| GTIN/EAN | 5906301812234 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 8 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6/3.5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.91 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.37 kg / 13.48 N |
| Indukcja magnetyczna ~ ? | 371.53 mT / 3715 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Niniejsze informacje stanowią rezultat kalkulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MP 8x6/3.5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3327 Gs
332.7 mT
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
bezpieczny |
| 1 mm |
2612 Gs
261.2 mT
|
0.84 kg / 1.86 lbs
844.4 g / 8.3 N
|
bezpieczny |
| 2 mm |
1884 Gs
188.4 mT
|
0.44 kg / 0.97 lbs
439.3 g / 4.3 N
|
bezpieczny |
| 3 mm |
1310 Gs
131.0 mT
|
0.21 kg / 0.47 lbs
212.4 g / 2.1 N
|
bezpieczny |
| 5 mm |
637 Gs
63.7 mT
|
0.05 kg / 0.11 lbs
50.3 g / 0.5 N
|
bezpieczny |
| 10 mm |
151 Gs
15.1 mT
|
0.00 kg / 0.01 lbs
2.8 g / 0.0 N
|
bezpieczny |
| 15 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
bezpieczny |
| 20 mm |
25 Gs
2.5 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 8x6/3.5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| 1 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
88.0 g / 0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 8x6/3.5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.41 kg / 0.91 lbs
411.0 g / 4.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.14 kg / 0.30 lbs
137.0 g / 1.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.69 kg / 1.51 lbs
685.0 g / 6.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 8x6/3.5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.14 kg / 0.30 lbs
137.0 g / 1.3 N
|
| 1 mm |
|
0.34 kg / 0.76 lbs
342.5 g / 3.4 N
|
| 2 mm |
|
0.69 kg / 1.51 lbs
685.0 g / 6.7 N
|
| 3 mm |
|
1.03 kg / 2.27 lbs
1027.5 g / 10.1 N
|
| 5 mm |
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
| 10 mm |
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
| 11 mm |
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
| 12 mm |
|
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MP 8x6/3.5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.37 kg / 3.02 lbs
1370.0 g / 13.4 N
|
OK |
| 40 °C | -2.2% |
1.34 kg / 2.95 lbs
1339.9 g / 13.1 N
|
OK |
| 60 °C | -4.4% |
1.31 kg / 2.89 lbs
1309.7 g / 12.8 N
|
|
| 80 °C | -6.6% |
1.28 kg / 2.82 lbs
1279.6 g / 12.6 N
|
|
| 100 °C | -28.8% |
0.98 kg / 2.15 lbs
975.4 g / 9.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MP 8x6/3.5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.36 kg / 5.20 lbs
4 867 Gs
|
0.35 kg / 0.78 lbs
354 g / 3.5 N
|
N/A |
| 1 mm |
1.90 kg / 4.20 lbs
5 981 Gs
|
0.29 kg / 0.63 lbs
286 g / 2.8 N
|
1.71 kg / 3.78 lbs
~0 Gs
|
| 2 mm |
1.45 kg / 3.20 lbs
5 223 Gs
|
0.22 kg / 0.48 lbs
218 g / 2.1 N
|
1.31 kg / 2.88 lbs
~0 Gs
|
| 3 mm |
1.06 kg / 2.34 lbs
4 468 Gs
|
0.16 kg / 0.35 lbs
159 g / 1.6 N
|
0.96 kg / 2.11 lbs
~0 Gs
|
| 5 mm |
0.53 kg / 1.16 lbs
3 148 Gs
|
0.08 kg / 0.17 lbs
79 g / 0.8 N
|
0.47 kg / 1.05 lbs
~0 Gs
|
| 10 mm |
0.09 kg / 0.19 lbs
1 274 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
301 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
16 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 8x6/3.5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 8x6/3.5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
39.18 km/h
(10.88 m/s)
|
0.05 J | |
| 30 mm |
67.78 km/h
(18.83 m/s)
|
0.16 J | |
| 50 mm |
87.50 km/h
(24.31 m/s)
|
0.27 J | |
| 100 mm |
123.74 km/h
(34.37 m/s)
|
0.54 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 8x6/3.5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 8x6/3.5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 299 Mx | 13.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 8x6/3.5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.37 kg | Standard |
| Woda (dno rzeki) |
1.57 kg
(+0.20 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- przy zerowej szczelinie (brak zanieczyszczeń)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina powietrzna (między magnesem a blachą), ponieważ nawet niewielka przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
BHP przy magnesach
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Trwała utrata siły
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Ostrzeżenie dla alergików
Niektóre osoby posiada nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może powodować wysypkę. Zalecamy stosowanie rękawiczek ochronnych.
Zakaz zabawy
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Ryzyko pożaru
Pył generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Siła neodymu
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Interferencja magnetyczna
Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
