MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030205
GTIN/EAN: 5906301812227
Średnica
62 mm [±0,1 mm]
Średnica wewnętrzna Ø
42 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
306.31 g
Kierunek magnesowania
↑ osiowy
Udźwig
58.67 kg / 575.60 N
Indukcja magnetyczna
389.14 mT / 3891 Gs
Powłoka
[NiCuNi] nikiel
165.00 ZŁ z VAT / szt. + cena za transport
134.15 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub napisz korzystając z
formularz zapytania
na naszej stronie.
Właściwości oraz formę magnesów neodymowych sprawdzisz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 62x42x25 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030205 |
| GTIN/EAN | 5906301812227 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 62 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 42 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 306.31 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 58.67 kg / 575.60 N |
| Indukcja magnetyczna ~ ? | 389.14 mT / 3891 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione informacje są wynik symulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MP 62x42x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4472 Gs
447.2 mT
|
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
krytyczny poziom |
| 1 mm |
4338 Gs
433.8 mT
|
55.21 kg / 121.72 lbs
55213.2 g / 541.6 N
|
krytyczny poziom |
| 2 mm |
4201 Gs
420.1 mT
|
51.77 kg / 114.13 lbs
51768.5 g / 507.8 N
|
krytyczny poziom |
| 3 mm |
4061 Gs
406.1 mT
|
48.39 kg / 106.69 lbs
48394.9 g / 474.8 N
|
krytyczny poziom |
| 5 mm |
3781 Gs
378.1 mT
|
41.94 kg / 92.47 lbs
41942.4 g / 411.5 N
|
krytyczny poziom |
| 10 mm |
3097 Gs
309.7 mT
|
28.15 kg / 62.06 lbs
28148.0 g / 276.1 N
|
krytyczny poziom |
| 15 mm |
2485 Gs
248.5 mT
|
18.12 kg / 39.94 lbs
18118.5 g / 177.7 N
|
krytyczny poziom |
| 20 mm |
1972 Gs
197.2 mT
|
11.41 kg / 25.16 lbs
11412.7 g / 112.0 N
|
krytyczny poziom |
| 30 mm |
1239 Gs
123.9 mT
|
4.51 kg / 9.93 lbs
4505.2 g / 44.2 N
|
uwaga |
| 50 mm |
533 Gs
53.3 mT
|
0.83 kg / 1.84 lbs
832.4 g / 8.2 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MP 62x42x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
11.73 kg / 25.87 lbs
11734.0 g / 115.1 N
|
| 1 mm | Stal (~0.2) |
11.04 kg / 24.34 lbs
11042.0 g / 108.3 N
|
| 2 mm | Stal (~0.2) |
10.35 kg / 22.83 lbs
10354.0 g / 101.6 N
|
| 3 mm | Stal (~0.2) |
9.68 kg / 21.34 lbs
9678.0 g / 94.9 N
|
| 5 mm | Stal (~0.2) |
8.39 kg / 18.49 lbs
8388.0 g / 82.3 N
|
| 10 mm | Stal (~0.2) |
5.63 kg / 12.41 lbs
5630.0 g / 55.2 N
|
| 15 mm | Stal (~0.2) |
3.62 kg / 7.99 lbs
3624.0 g / 35.6 N
|
| 20 mm | Stal (~0.2) |
2.28 kg / 5.03 lbs
2282.0 g / 22.4 N
|
| 30 mm | Stal (~0.2) |
0.90 kg / 1.99 lbs
902.0 g / 8.8 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
166.0 g / 1.6 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MP 62x42x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
17.60 kg / 38.80 lbs
17601.0 g / 172.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
11.73 kg / 25.87 lbs
11734.0 g / 115.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
5.87 kg / 12.93 lbs
5867.0 g / 57.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
29.34 kg / 64.67 lbs
29335.0 g / 287.8 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 62x42x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.96 kg / 4.31 lbs
1955.7 g / 19.2 N
|
| 1 mm |
|
4.89 kg / 10.78 lbs
4889.2 g / 48.0 N
|
| 2 mm |
|
9.78 kg / 21.56 lbs
9778.3 g / 95.9 N
|
| 3 mm |
|
14.67 kg / 32.34 lbs
14667.5 g / 143.9 N
|
| 5 mm |
|
24.45 kg / 53.89 lbs
24445.8 g / 239.8 N
|
| 10 mm |
|
48.89 kg / 107.79 lbs
48891.7 g / 479.6 N
|
| 11 mm |
|
53.78 kg / 118.57 lbs
53780.8 g / 527.6 N
|
| 12 mm |
|
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MP 62x42x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
58.67 kg / 129.35 lbs
58670.0 g / 575.6 N
|
OK |
| 40 °C | -2.2% |
57.38 kg / 126.50 lbs
57379.3 g / 562.9 N
|
OK |
| 60 °C | -4.4% |
56.09 kg / 123.65 lbs
56088.5 g / 550.2 N
|
OK |
| 80 °C | -6.6% |
54.80 kg / 120.81 lbs
54797.8 g / 537.6 N
|
|
| 100 °C | -28.8% |
41.77 kg / 92.09 lbs
41773.0 g / 409.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MP 62x42x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
264.93 kg / 584.07 lbs
5 588 Gs
|
39.74 kg / 87.61 lbs
39740 g / 389.8 N
|
N/A |
| 1 mm |
257.19 kg / 567.00 lbs
8 812 Gs
|
38.58 kg / 85.05 lbs
38578 g / 378.4 N
|
231.47 kg / 510.30 lbs
~0 Gs
|
| 2 mm |
249.32 kg / 549.66 lbs
8 676 Gs
|
37.40 kg / 82.45 lbs
37398 g / 366.9 N
|
224.39 kg / 494.69 lbs
~0 Gs
|
| 3 mm |
241.51 kg / 532.44 lbs
8 539 Gs
|
36.23 kg / 79.87 lbs
36227 g / 355.4 N
|
217.36 kg / 479.19 lbs
~0 Gs
|
| 5 mm |
226.10 kg / 498.47 lbs
8 262 Gs
|
33.92 kg / 74.77 lbs
33915 g / 332.7 N
|
203.49 kg / 448.62 lbs
~0 Gs
|
| 10 mm |
189.40 kg / 417.55 lbs
7 562 Gs
|
28.41 kg / 62.63 lbs
28409 g / 278.7 N
|
170.46 kg / 375.79 lbs
~0 Gs
|
| 20 mm |
127.11 kg / 280.22 lbs
6 195 Gs
|
19.07 kg / 42.03 lbs
19066 g / 187.0 N
|
114.40 kg / 252.20 lbs
~0 Gs
|
| 50 mm |
32.28 kg / 71.17 lbs
3 122 Gs
|
4.84 kg / 10.68 lbs
4843 g / 47.5 N
|
29.06 kg / 64.06 lbs
~0 Gs
|
| 60 mm |
20.34 kg / 44.85 lbs
2 478 Gs
|
3.05 kg / 6.73 lbs
3052 g / 29.9 N
|
18.31 kg / 40.36 lbs
~0 Gs
|
| 70 mm |
12.99 kg / 28.63 lbs
1 980 Gs
|
1.95 kg / 4.29 lbs
1948 g / 19.1 N
|
11.69 kg / 25.77 lbs
~0 Gs
|
| 80 mm |
8.43 kg / 18.59 lbs
1 595 Gs
|
1.26 kg / 2.79 lbs
1265 g / 12.4 N
|
7.59 kg / 16.73 lbs
~0 Gs
|
| 90 mm |
5.58 kg / 12.29 lbs
1 298 Gs
|
0.84 kg / 1.84 lbs
836 g / 8.2 N
|
5.02 kg / 11.06 lbs
~0 Gs
|
| 100 mm |
3.76 kg / 8.29 lbs
1 065 Gs
|
0.56 kg / 1.24 lbs
564 g / 5.5 N
|
3.38 kg / 7.46 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MP 62x42x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 32.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 25.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 20.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 62x42x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.65 km/h
(4.90 m/s)
|
3.68 J | |
| 30 mm |
25.31 km/h
(7.03 m/s)
|
7.57 J | |
| 50 mm |
31.49 km/h
(8.75 m/s)
|
11.72 J | |
| 100 mm |
44.16 km/h
(12.27 m/s)
|
23.04 J |
Tabela 9: Parametry powłoki (trwałość)
MP 62x42x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 62x42x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 100 906 Mx | 1009.1 µWb |
| Współczynnik Pc | 0.64 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 62x42x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 58.67 kg | Standard |
| Woda (dno rzeki) |
67.18 kg
(+8.51 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.64
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- o przekroju przynajmniej 10 mm
- z powierzchnią wolną od rys
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Praktyczny udźwig: czynniki wpływające
- Dystans – występowanie jakiejkolwiek warstwy (farba, taśma, szczelina) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – zbyt cienka blacha nie zamyka strumienia, przez co część strumienia marnuje się w powietrzu.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
BHP przy magnesach
Nośniki danych
Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Unikaj kontaktu w przypadku alergii
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może powodować silną reakcję alergiczną. Zalecamy używanie rękawiczek ochronnych.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Implanty kardiologiczne
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Łatwopalność
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Podatność na pękanie
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Bezpieczna praca
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj z dala od dzieci i zwierząt.
Temperatura pracy
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i siłę przyciągania.
