MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030204
GTIN/EAN: 5906301812210
Średnica
60 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.41 kg / 92.27 N
Indukcja magnetyczna
101.92 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
47.99 ZŁ z VAT / szt. + cena za transport
39.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub napisz poprzez
nasz formularz online
na naszej stronie.
Moc oraz formę magnesów neodymowych skontrolujesz w naszym
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030204 |
| GTIN/EAN | 5906301812210 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 60 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.41 kg / 92.27 N |
| Indukcja magnetyczna ~ ? | 101.92 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Poniższe informacje są bezpośredni efekt analizy inżynierskiej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MP 60x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4541 Gs
454.1 mT
|
9.41 kg / 9410.0 g
92.3 N
|
uwaga |
| 1 mm |
4400 Gs
440.0 mT
|
8.83 kg / 8832.4 g
86.6 N
|
uwaga |
| 2 mm |
4254 Gs
425.4 mT
|
8.26 kg / 8258.2 g
81.0 N
|
uwaga |
| 3 mm |
4107 Gs
410.7 mT
|
7.70 kg / 7697.5 g
75.5 N
|
uwaga |
| 5 mm |
3812 Gs
381.2 mT
|
6.63 kg / 6630.0 g
65.0 N
|
uwaga |
| 10 mm |
3097 Gs
309.7 mT
|
4.38 kg / 4375.1 g
42.9 N
|
uwaga |
| 15 mm |
2463 Gs
246.3 mT
|
2.77 kg / 2767.8 g
27.2 N
|
uwaga |
| 20 mm |
1939 Gs
193.9 mT
|
1.72 kg / 1715.2 g
16.8 N
|
słaby uchwyt |
| 30 mm |
1202 Gs
120.2 mT
|
0.66 kg / 659.2 g
6.5 N
|
słaby uchwyt |
| 50 mm |
509 Gs
50.9 mT
|
0.12 kg / 118.0 g
1.2 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MP 60x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.88 kg / 1882.0 g
18.5 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 1766.0 g
17.3 N
|
| 2 mm | Stal (~0.2) |
1.65 kg / 1652.0 g
16.2 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 1540.0 g
15.1 N
|
| 5 mm | Stal (~0.2) |
1.33 kg / 1326.0 g
13.0 N
|
| 10 mm | Stal (~0.2) |
0.88 kg / 876.0 g
8.6 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 554.0 g
5.4 N
|
| 20 mm | Stal (~0.2) |
0.34 kg / 344.0 g
3.4 N
|
| 30 mm | Stal (~0.2) |
0.13 kg / 132.0 g
1.3 N
|
| 50 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 60x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.82 kg / 2823.0 g
27.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.88 kg / 1882.0 g
18.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.94 kg / 941.0 g
9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.71 kg / 4705.0 g
46.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 60x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.94 kg / 941.0 g
9.2 N
|
| 1 mm |
|
2.35 kg / 2352.5 g
23.1 N
|
| 2 mm |
|
4.71 kg / 4705.0 g
46.2 N
|
| 5 mm |
|
9.41 kg / 9410.0 g
92.3 N
|
| 10 mm |
|
9.41 kg / 9410.0 g
92.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MP 60x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.41 kg / 9410.0 g
92.3 N
|
OK |
| 40 °C | -2.2% |
9.20 kg / 9203.0 g
90.3 N
|
OK |
| 60 °C | -4.4% |
9.00 kg / 8996.0 g
88.3 N
|
OK |
| 80 °C | -6.6% |
8.79 kg / 8788.9 g
86.2 N
|
|
| 100 °C | -28.8% |
6.70 kg / 6699.9 g
65.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 60x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
303.46 kg / 303459 g
2976.9 N
5 621 Gs
|
N/A |
| 1 mm |
294.21 kg / 294211 g
2886.2 N
8 943 Gs
|
264.79 kg / 264789 g
2597.6 N
~0 Gs
|
| 2 mm |
284.83 kg / 284831 g
2794.2 N
8 800 Gs
|
256.35 kg / 256348 g
2514.8 N
~0 Gs
|
| 3 mm |
275.53 kg / 275527 g
2702.9 N
8 655 Gs
|
247.97 kg / 247974 g
2432.6 N
~0 Gs
|
| 5 mm |
257.21 kg / 257213 g
2523.3 N
8 362 Gs
|
231.49 kg / 231491 g
2270.9 N
~0 Gs
|
| 10 mm |
213.81 kg / 213807 g
2097.4 N
7 624 Gs
|
192.43 kg / 192427 g
1887.7 N
~0 Gs
|
| 20 mm |
141.09 kg / 141090 g
1384.1 N
6 193 Gs
|
126.98 kg / 126981 g
1245.7 N
~0 Gs
|
| 50 mm |
34.15 kg / 34154 g
335.1 N
3 047 Gs
|
30.74 kg / 30739 g
301.5 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MP 60x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 60x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.67 km/h
(3.52 m/s)
|
0.58 J | |
| 30 mm |
18.20 km/h
(5.06 m/s)
|
1.20 J | |
| 50 mm |
22.71 km/h
(6.31 m/s)
|
1.88 J | |
| 100 mm |
31.88 km/h
(8.85 m/s)
|
3.70 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 60x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 60x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 109 640 Mx | 1096.4 µWb |
| Współczynnik Pc | 0.62 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 60x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.41 kg | Standard |
| Woda (dno rzeki) |
10.77 kg
(+1.36 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.62
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią oczyszczoną i gładką
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Dystans (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość blachy – za chuda stal nie przyjmuje całego pola, przez co część mocy ucieka w powietrzu.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Ostrzeżenia
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Niebezpieczeństwo dla rozruszników
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Zagrożenie dla najmłodszych
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem dzieci i zwierząt.
Maksymalna temperatura
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ostrożność wymagana
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Nie wierć w magnesach
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Nośniki danych
Ekstremalne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
