MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030204
GTIN/EAN: 5906301812210
Średnica
60 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.41 kg / 92.27 N
Indukcja magnetyczna
101.92 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
47.99 ZŁ z VAT / szt. + cena za transport
39.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie zostaw wiadomość poprzez
nasz formularz online
na naszej stronie.
Moc oraz budowę magnesów testujesz w naszym
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030204 |
| GTIN/EAN | 5906301812210 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 60 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.41 kg / 92.27 N |
| Indukcja magnetyczna ~ ? | 101.92 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Niniejsze informacje stanowią bezpośredni efekt analizy matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MP 60x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4541 Gs
454.1 mT
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
mocny |
| 1 mm |
4400 Gs
440.0 mT
|
8.83 kg / 19.47 lbs
8832.4 g / 86.6 N
|
mocny |
| 2 mm |
4254 Gs
425.4 mT
|
8.26 kg / 18.21 lbs
8258.2 g / 81.0 N
|
mocny |
| 3 mm |
4107 Gs
410.7 mT
|
7.70 kg / 16.97 lbs
7697.5 g / 75.5 N
|
mocny |
| 5 mm |
3812 Gs
381.2 mT
|
6.63 kg / 14.62 lbs
6630.0 g / 65.0 N
|
mocny |
| 10 mm |
3097 Gs
309.7 mT
|
4.38 kg / 9.65 lbs
4375.1 g / 42.9 N
|
mocny |
| 15 mm |
2463 Gs
246.3 mT
|
2.77 kg / 6.10 lbs
2767.8 g / 27.2 N
|
mocny |
| 20 mm |
1939 Gs
193.9 mT
|
1.72 kg / 3.78 lbs
1715.2 g / 16.8 N
|
słaby uchwyt |
| 30 mm |
1202 Gs
120.2 mT
|
0.66 kg / 1.45 lbs
659.2 g / 6.5 N
|
słaby uchwyt |
| 50 mm |
509 Gs
50.9 mT
|
0.12 kg / 0.26 lbs
118.0 g / 1.2 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MP 60x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.89 lbs
1766.0 g / 17.3 N
|
| 2 mm | Stal (~0.2) |
1.65 kg / 3.64 lbs
1652.0 g / 16.2 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1540.0 g / 15.1 N
|
| 5 mm | Stal (~0.2) |
1.33 kg / 2.92 lbs
1326.0 g / 13.0 N
|
| 10 mm | Stal (~0.2) |
0.88 kg / 1.93 lbs
876.0 g / 8.6 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
554.0 g / 5.4 N
|
| 20 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 30 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 50 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 60x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.82 kg / 6.22 lbs
2823.0 g / 27.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.94 kg / 2.07 lbs
941.0 g / 9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.71 kg / 10.37 lbs
4705.0 g / 46.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MP 60x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.94 kg / 2.07 lbs
941.0 g / 9.2 N
|
| 1 mm |
|
2.35 kg / 5.19 lbs
2352.5 g / 23.1 N
|
| 2 mm |
|
4.71 kg / 10.37 lbs
4705.0 g / 46.2 N
|
| 3 mm |
|
7.06 kg / 15.56 lbs
7057.5 g / 69.2 N
|
| 5 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 10 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 11 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 12 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MP 60x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
OK |
| 40 °C | -2.2% |
9.20 kg / 20.29 lbs
9203.0 g / 90.3 N
|
OK |
| 60 °C | -4.4% |
9.00 kg / 19.83 lbs
8996.0 g / 88.3 N
|
OK |
| 80 °C | -6.6% |
8.79 kg / 19.38 lbs
8788.9 g / 86.2 N
|
|
| 100 °C | -28.8% |
6.70 kg / 14.77 lbs
6699.9 g / 65.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 60x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
303.46 kg / 669.01 lbs
5 621 Gs
|
45.52 kg / 100.35 lbs
45519 g / 446.5 N
|
N/A |
| 1 mm |
294.21 kg / 648.62 lbs
8 943 Gs
|
44.13 kg / 97.29 lbs
44132 g / 432.9 N
|
264.79 kg / 583.76 lbs
~0 Gs
|
| 2 mm |
284.83 kg / 627.94 lbs
8 800 Gs
|
42.72 kg / 94.19 lbs
42725 g / 419.1 N
|
256.35 kg / 565.15 lbs
~0 Gs
|
| 3 mm |
275.53 kg / 607.43 lbs
8 655 Gs
|
41.33 kg / 91.11 lbs
41329 g / 405.4 N
|
247.97 kg / 546.69 lbs
~0 Gs
|
| 5 mm |
257.21 kg / 567.06 lbs
8 362 Gs
|
38.58 kg / 85.06 lbs
38582 g / 378.5 N
|
231.49 kg / 510.35 lbs
~0 Gs
|
| 10 mm |
213.81 kg / 471.36 lbs
7 624 Gs
|
32.07 kg / 70.70 lbs
32071 g / 314.6 N
|
192.43 kg / 424.23 lbs
~0 Gs
|
| 20 mm |
141.09 kg / 311.05 lbs
6 193 Gs
|
21.16 kg / 46.66 lbs
21164 g / 207.6 N
|
126.98 kg / 279.95 lbs
~0 Gs
|
| 50 mm |
34.15 kg / 75.30 lbs
3 047 Gs
|
5.12 kg / 11.29 lbs
5123 g / 50.3 N
|
30.74 kg / 67.77 lbs
~0 Gs
|
| 60 mm |
21.26 kg / 46.87 lbs
2 404 Gs
|
3.19 kg / 7.03 lbs
3189 g / 31.3 N
|
19.13 kg / 42.18 lbs
~0 Gs
|
| 70 mm |
13.43 kg / 29.61 lbs
1 911 Gs
|
2.01 kg / 4.44 lbs
2015 g / 19.8 N
|
12.09 kg / 26.65 lbs
~0 Gs
|
| 80 mm |
8.65 kg / 19.06 lbs
1 533 Gs
|
1.30 kg / 2.86 lbs
1297 g / 12.7 N
|
7.78 kg / 17.16 lbs
~0 Gs
|
| 90 mm |
5.68 kg / 12.52 lbs
1 243 Gs
|
0.85 kg / 1.88 lbs
852 g / 8.4 N
|
5.11 kg / 11.27 lbs
~0 Gs
|
| 100 mm |
3.81 kg / 8.39 lbs
1 017 Gs
|
0.57 kg / 1.26 lbs
571 g / 5.6 N
|
3.43 kg / 7.55 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MP 60x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 60x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.67 km/h
(3.52 m/s)
|
0.58 J | |
| 30 mm |
18.20 km/h
(5.06 m/s)
|
1.20 J | |
| 50 mm |
22.71 km/h
(6.31 m/s)
|
1.88 J | |
| 100 mm |
31.88 km/h
(8.85 m/s)
|
3.70 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 60x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 60x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 109 640 Mx | 1096.4 µWb |
| Współczynnik Pc | 0.62 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 60x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.41 kg | Standard |
| Woda (dno rzeki) |
10.77 kg
(+1.36 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.62
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o grubości nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (brak powłok)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig wyznaczano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Elektronika precyzyjna
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Wpływ na zdrowie
Osoby z stymulatorem serca muszą zachować duży odstęp od magnesów. Silny magnes może zakłócić działanie implantu.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Produkt nie dla dzieci
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Limity termiczne
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Obróbka mechaniczna
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Unikaj kontaktu w przypadku alergii
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Świadome użytkowanie
Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
