MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030204
GTIN/EAN: 5906301812210
Średnica
60 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.41 kg / 92.27 N
Indukcja magnetyczna
101.92 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
47.99 ZŁ z VAT / szt. + cena za transport
39.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub napisz przez
formularz zapytania
na stronie kontaktowej.
Siłę i formę magnesów neodymowych skontrolujesz u nas w
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne - MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030204 |
| GTIN/EAN | 5906301812210 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 60 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.41 kg / 92.27 N |
| Indukcja magnetyczna ~ ? | 101.92 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt analizy matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MP 60x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4541 Gs
454.1 mT
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
mocny |
| 1 mm |
4400 Gs
440.0 mT
|
8.83 kg / 19.47 lbs
8832.4 g / 86.6 N
|
mocny |
| 2 mm |
4254 Gs
425.4 mT
|
8.26 kg / 18.21 lbs
8258.2 g / 81.0 N
|
mocny |
| 3 mm |
4107 Gs
410.7 mT
|
7.70 kg / 16.97 lbs
7697.5 g / 75.5 N
|
mocny |
| 5 mm |
3812 Gs
381.2 mT
|
6.63 kg / 14.62 lbs
6630.0 g / 65.0 N
|
mocny |
| 10 mm |
3097 Gs
309.7 mT
|
4.38 kg / 9.65 lbs
4375.1 g / 42.9 N
|
mocny |
| 15 mm |
2463 Gs
246.3 mT
|
2.77 kg / 6.10 lbs
2767.8 g / 27.2 N
|
mocny |
| 20 mm |
1939 Gs
193.9 mT
|
1.72 kg / 3.78 lbs
1715.2 g / 16.8 N
|
słaby uchwyt |
| 30 mm |
1202 Gs
120.2 mT
|
0.66 kg / 1.45 lbs
659.2 g / 6.5 N
|
słaby uchwyt |
| 50 mm |
509 Gs
50.9 mT
|
0.12 kg / 0.26 lbs
118.0 g / 1.2 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 60x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 3.89 lbs
1766.0 g / 17.3 N
|
| 2 mm | Stal (~0.2) |
1.65 kg / 3.64 lbs
1652.0 g / 16.2 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1540.0 g / 15.1 N
|
| 5 mm | Stal (~0.2) |
1.33 kg / 2.92 lbs
1326.0 g / 13.0 N
|
| 10 mm | Stal (~0.2) |
0.88 kg / 1.93 lbs
876.0 g / 8.6 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
554.0 g / 5.4 N
|
| 20 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 30 mm | Stal (~0.2) |
0.13 kg / 0.29 lbs
132.0 g / 1.3 N
|
| 50 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MP 60x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.82 kg / 6.22 lbs
2823.0 g / 27.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.94 kg / 2.07 lbs
941.0 g / 9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.71 kg / 10.37 lbs
4705.0 g / 46.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MP 60x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.94 kg / 2.07 lbs
941.0 g / 9.2 N
|
| 1 mm |
|
2.35 kg / 5.19 lbs
2352.5 g / 23.1 N
|
| 2 mm |
|
4.71 kg / 10.37 lbs
4705.0 g / 46.2 N
|
| 3 mm |
|
7.06 kg / 15.56 lbs
7057.5 g / 69.2 N
|
| 5 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 10 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 11 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
| 12 mm |
|
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MP 60x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.41 kg / 20.75 lbs
9410.0 g / 92.3 N
|
OK |
| 40 °C | -2.2% |
9.20 kg / 20.29 lbs
9203.0 g / 90.3 N
|
OK |
| 60 °C | -4.4% |
9.00 kg / 19.83 lbs
8996.0 g / 88.3 N
|
OK |
| 80 °C | -6.6% |
8.79 kg / 19.38 lbs
8788.9 g / 86.2 N
|
|
| 100 °C | -28.8% |
6.70 kg / 14.77 lbs
6699.9 g / 65.7 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 60x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
303.46 kg / 669.01 lbs
5 621 Gs
|
45.52 kg / 100.35 lbs
45519 g / 446.5 N
|
N/A |
| 1 mm |
294.21 kg / 648.62 lbs
8 943 Gs
|
44.13 kg / 97.29 lbs
44132 g / 432.9 N
|
264.79 kg / 583.76 lbs
~0 Gs
|
| 2 mm |
284.83 kg / 627.94 lbs
8 800 Gs
|
42.72 kg / 94.19 lbs
42725 g / 419.1 N
|
256.35 kg / 565.15 lbs
~0 Gs
|
| 3 mm |
275.53 kg / 607.43 lbs
8 655 Gs
|
41.33 kg / 91.11 lbs
41329 g / 405.4 N
|
247.97 kg / 546.69 lbs
~0 Gs
|
| 5 mm |
257.21 kg / 567.06 lbs
8 362 Gs
|
38.58 kg / 85.06 lbs
38582 g / 378.5 N
|
231.49 kg / 510.35 lbs
~0 Gs
|
| 10 mm |
213.81 kg / 471.36 lbs
7 624 Gs
|
32.07 kg / 70.70 lbs
32071 g / 314.6 N
|
192.43 kg / 424.23 lbs
~0 Gs
|
| 20 mm |
141.09 kg / 311.05 lbs
6 193 Gs
|
21.16 kg / 46.66 lbs
21164 g / 207.6 N
|
126.98 kg / 279.95 lbs
~0 Gs
|
| 50 mm |
34.15 kg / 75.30 lbs
3 047 Gs
|
5.12 kg / 11.29 lbs
5123 g / 50.3 N
|
30.74 kg / 67.77 lbs
~0 Gs
|
| 60 mm |
21.26 kg / 46.87 lbs
2 404 Gs
|
3.19 kg / 7.03 lbs
3189 g / 31.3 N
|
19.13 kg / 42.18 lbs
~0 Gs
|
| 70 mm |
13.43 kg / 29.61 lbs
1 911 Gs
|
2.01 kg / 4.44 lbs
2015 g / 19.8 N
|
12.09 kg / 26.65 lbs
~0 Gs
|
| 80 mm |
8.65 kg / 19.06 lbs
1 533 Gs
|
1.30 kg / 2.86 lbs
1297 g / 12.7 N
|
7.78 kg / 17.16 lbs
~0 Gs
|
| 90 mm |
5.68 kg / 12.52 lbs
1 243 Gs
|
0.85 kg / 1.88 lbs
852 g / 8.4 N
|
5.11 kg / 11.27 lbs
~0 Gs
|
| 100 mm |
3.81 kg / 8.39 lbs
1 017 Gs
|
0.57 kg / 1.26 lbs
571 g / 5.6 N
|
3.43 kg / 7.55 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MP 60x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MP 60x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.67 km/h
(3.52 m/s)
|
0.58 J | |
| 30 mm |
18.20 km/h
(5.06 m/s)
|
1.20 J | |
| 50 mm |
22.71 km/h
(6.31 m/s)
|
1.88 J | |
| 100 mm |
31.88 km/h
(8.85 m/s)
|
3.70 J |
Tabela 9: Parametry powłoki (trwałość)
MP 60x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 60x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 109 640 Mx | 1096.4 µWb |
| Współczynnik Pc | 0.62 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 60x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.41 kg | Standard |
| Woda (dno rzeki) |
10.77 kg
(+1.36 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.62
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (wg danych).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Wady
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której grubość to min. 10 mm
- z płaszczyzną idealnie równą
- przy bezpośrednim styku (brak powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – za chuda stal nie przyjmuje całego pola, przez co część strumienia jest tracona w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Tylko dla dorosłych
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj z dala od dzieci i zwierząt.
Implanty medyczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie magnetometrów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą połamać palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Maksymalna temperatura
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Samozapłon
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Siła neodymu
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Rozprysk materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
