MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030204
GTIN: 5906301812210
Średnica
60 mm [±0,1 mm]
Średnica wewnętrzna Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.41 kg / 92.27 N
Indukcja magnetyczna
101.92 mT / 1019 Gs
Powłoka
[NiCuNi] nikiel
47.99 ZŁ z VAT / szt. + cena za transport
39.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz trudności w wyborze?
Dzwoń do nas
+48 22 499 98 98
albo napisz przez
formularz zapytania
na stronie kontakt.
Siłę oraz wygląd magnesu neodymowego sprawdzisz w naszym
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka MP 60x20x5 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030204 |
| GTIN | 5906301812210 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 60 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.41 kg / 92.27 N |
| Indukcja magnetyczna ~ ? | 101.92 mT / 1019 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Przedstawione wartości są bezpośredni efekt kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy NdFeB. Rzeczywiste parametry mogą się różnić. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
MP 60x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4541 Gs
454.1 mT
|
9.41 kg / 9410.0 g
92.3 N
|
uwaga |
| 1 mm |
4400 Gs
440.0 mT
|
8.83 kg / 8832.4 g
86.6 N
|
uwaga |
| 2 mm |
4254 Gs
425.4 mT
|
8.26 kg / 8258.2 g
81.0 N
|
uwaga |
| 3 mm |
4107 Gs
410.7 mT
|
7.70 kg / 7697.5 g
75.5 N
|
uwaga |
| 5 mm |
3812 Gs
381.2 mT
|
6.63 kg / 6630.0 g
65.0 N
|
uwaga |
| 10 mm |
3097 Gs
309.7 mT
|
4.38 kg / 4375.1 g
42.9 N
|
uwaga |
| 15 mm |
2463 Gs
246.3 mT
|
2.77 kg / 2767.8 g
27.2 N
|
uwaga |
| 20 mm |
1939 Gs
193.9 mT
|
1.72 kg / 1715.2 g
16.8 N
|
słaby uchwyt |
| 30 mm |
1202 Gs
120.2 mT
|
0.66 kg / 659.2 g
6.5 N
|
słaby uchwyt |
| 50 mm |
509 Gs
50.9 mT
|
0.12 kg / 118.0 g
1.2 N
|
słaby uchwyt |
MP 60x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.88 kg / 1882.0 g
18.5 N
|
| 1 mm | Stal (~0.2) |
1.77 kg / 1766.0 g
17.3 N
|
| 2 mm | Stal (~0.2) |
1.65 kg / 1652.0 g
16.2 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 1540.0 g
15.1 N
|
| 5 mm | Stal (~0.2) |
1.33 kg / 1326.0 g
13.0 N
|
| 10 mm | Stal (~0.2) |
0.88 kg / 876.0 g
8.6 N
|
| 15 mm | Stal (~0.2) |
0.55 kg / 554.0 g
5.4 N
|
| 20 mm | Stal (~0.2) |
0.34 kg / 344.0 g
3.4 N
|
| 30 mm | Stal (~0.2) |
0.13 kg / 132.0 g
1.3 N
|
| 50 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
MP 60x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.82 kg / 2823.0 g
27.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.88 kg / 1882.0 g
18.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.94 kg / 941.0 g
9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.71 kg / 4705.0 g
46.2 N
|
MP 60x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.94 kg / 941.0 g
9.2 N
|
| 1 mm |
|
2.35 kg / 2352.5 g
23.1 N
|
| 2 mm |
|
4.71 kg / 4705.0 g
46.2 N
|
| 5 mm |
|
9.41 kg / 9410.0 g
92.3 N
|
| 10 mm |
|
9.41 kg / 9410.0 g
92.3 N
|
MP 60x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.41 kg / 9410.0 g
92.3 N
|
OK |
| 40 °C | -2.2% |
9.20 kg / 9203.0 g
90.3 N
|
OK |
| 60 °C | -4.4% |
9.00 kg / 8996.0 g
88.3 N
|
OK |
| 80 °C | -6.6% |
8.79 kg / 8788.9 g
86.2 N
|
|
| 100 °C | -28.8% |
6.70 kg / 6699.9 g
65.7 N
|
MP 60x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
303.46 kg / 303459 g
2976.9 N
5 621 Gs
|
N/A |
| 1 mm |
294.21 kg / 294211 g
2886.2 N
8 943 Gs
|
264.79 kg / 264789 g
2597.6 N
~0 Gs
|
| 2 mm |
284.83 kg / 284831 g
2794.2 N
8 800 Gs
|
256.35 kg / 256348 g
2514.8 N
~0 Gs
|
| 3 mm |
275.53 kg / 275527 g
2702.9 N
8 655 Gs
|
247.97 kg / 247974 g
2432.6 N
~0 Gs
|
| 5 mm |
257.21 kg / 257213 g
2523.3 N
8 362 Gs
|
231.49 kg / 231491 g
2270.9 N
~0 Gs
|
| 10 mm |
213.81 kg / 213807 g
2097.4 N
7 624 Gs
|
192.43 kg / 192427 g
1887.7 N
~0 Gs
|
| 20 mm |
141.09 kg / 141090 g
1384.1 N
6 193 Gs
|
126.98 kg / 126981 g
1245.7 N
~0 Gs
|
| 50 mm |
34.15 kg / 34154 g
335.1 N
3 047 Gs
|
30.74 kg / 30739 g
301.5 N
~0 Gs
|
MP 60x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 31.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 24.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 19.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 15.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 14.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 6.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 5.0 cm |
MP 60x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
12.67 km/h
(3.52 m/s)
|
0.58 J | |
| 30 mm |
18.20 km/h
(5.06 m/s)
|
1.20 J | |
| 50 mm |
22.71 km/h
(6.31 m/s)
|
1.88 J | |
| 100 mm |
31.88 km/h
(8.85 m/s)
|
3.70 J |
MP 60x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MP 60x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 109 640 Mx | 1096.4 µWb |
| Współczynnik Pc | 0.62 | Wysoki (Stabilny) |
MP 60x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.41 kg | Standard |
| Woda (dno rzeki) |
10.77 kg
(+1.36 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Zobacz też inne oferty
Zalety i wady magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok ekstremalnej siły, produkty te wyróżniają się następującymi plusami:
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
Podany w tabeli udźwig jest wartością teoretyczną maksymalną wykonanego w specyficznych, idealnych warunkach:
- z użyciem podłoża ze miękkiej stali, która służy jako zwora magnetyczna
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze pokojowej
Co wpływa na udźwig w praktyce
Na skuteczność trzymania wpływają parametry środowiska pracy, m.in. (od najważniejszych):
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
* Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
Zalety i wady magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok ekstremalnej siły, produkty te wyróżniają się następującymi plusami:
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
Podany w tabeli udźwig jest wartością teoretyczną maksymalną wykonanego w specyficznych, idealnych warunkach:
- z użyciem podłoża ze miękkiej stali, która służy jako zwora magnetyczna
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze pokojowej
Co wpływa na udźwig w praktyce
Na skuteczność trzymania wpływają parametry środowiska pracy, m.in. (od najważniejszych):
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
* Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
BHP przy magnesach
Ostrożność wymagana
Używaj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Ryzyko pożaru
Proszek generowany podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ochrona dłoni
Silne magnesy mogą połamać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Uwaga na odpryski
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Reakcje alergiczne
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Uwaga: zadławienie
Silne magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Zagrożenie dla elektroniki
Ekstremalne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Uszkodzenia czujników
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
Ważne!
Szukasz szczegółów? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
