MP 5x2.7/1.2x5 S / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030202
GTIN/EAN: 5906301812197
Średnica
5 mm [±0,1 mm]
Średnica wewnętrzna Ø
2.7/1.2 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
0.69 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.75 kg / 7.31 N
Indukcja magnetyczna
553.14 mT / 5531 Gs
Powłoka
[NiCuNi] nikiel
0.836 ZŁ z VAT / szt. + cena za transport
0.680 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub zostaw wiadomość korzystając z
formularz kontaktowy
w sekcji kontakt.
Właściwości oraz kształt magnesów neodymowych testujesz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MP 5x2.7/1.2x5 S / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 5x2.7/1.2x5 S / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030202 |
| GTIN/EAN | 5906301812197 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 5 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 2.7/1.2 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 0.69 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.75 kg / 7.31 N |
| Indukcja magnetyczna ~ ? | 553.14 mT / 5531 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze dane są rezultat kalkulacji fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MP 5x2.7/1.2x5 S / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5322 Gs
532.2 mT
|
0.75 kg / 750.0 g
7.4 N
|
niskie ryzyko |
| 1 mm |
3295 Gs
329.5 mT
|
0.29 kg / 287.5 g
2.8 N
|
niskie ryzyko |
| 2 mm |
1883 Gs
188.3 mT
|
0.09 kg / 93.9 g
0.9 N
|
niskie ryzyko |
| 3 mm |
1098 Gs
109.8 mT
|
0.03 kg / 31.9 g
0.3 N
|
niskie ryzyko |
| 5 mm |
440 Gs
44.0 mT
|
0.01 kg / 5.1 g
0.1 N
|
niskie ryzyko |
| 10 mm |
92 Gs
9.2 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
| 15 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 5x2.7/1.2x5 S / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.15 kg / 150.0 g
1.5 N
|
| 1 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 5x2.7/1.2x5 S / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.22 kg / 225.0 g
2.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.15 kg / 150.0 g
1.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 75.0 g
0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.38 kg / 375.0 g
3.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 5x2.7/1.2x5 S / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 75.0 g
0.7 N
|
| 1 mm |
|
0.19 kg / 187.5 g
1.8 N
|
| 2 mm |
|
0.38 kg / 375.0 g
3.7 N
|
| 5 mm |
|
0.75 kg / 750.0 g
7.4 N
|
| 10 mm |
|
0.75 kg / 750.0 g
7.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MP 5x2.7/1.2x5 S / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.75 kg / 750.0 g
7.4 N
|
OK |
| 40 °C | -2.2% |
0.73 kg / 733.5 g
7.2 N
|
OK |
| 60 °C | -4.4% |
0.72 kg / 717.0 g
7.0 N
|
OK |
| 80 °C | -6.6% |
0.70 kg / 700.5 g
6.9 N
|
|
| 100 °C | -28.8% |
0.53 kg / 534.0 g
5.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MP 5x2.7/1.2x5 S / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.75 kg / 2747 g
26.9 N
5 924 Gs
|
N/A |
| 1 mm |
1.77 kg / 1768 g
17.3 N
8 541 Gs
|
1.59 kg / 1592 g
15.6 N
~0 Gs
|
| 2 mm |
1.05 kg / 1053 g
10.3 N
6 590 Gs
|
0.95 kg / 948 g
9.3 N
~0 Gs
|
| 3 mm |
0.60 kg / 604 g
5.9 N
4 992 Gs
|
0.54 kg / 544 g
5.3 N
~0 Gs
|
| 5 mm |
0.20 kg / 198 g
1.9 N
2 860 Gs
|
0.18 kg / 178 g
1.8 N
~0 Gs
|
| 10 mm |
0.02 kg / 19 g
0.2 N
880 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
184 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
16 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MP 5x2.7/1.2x5 S / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 5x2.7/1.2x5 S / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
33.26 km/h
(9.24 m/s)
|
0.03 J | |
| 30 mm |
57.59 km/h
(16.00 m/s)
|
0.09 J | |
| 50 mm |
74.35 km/h
(20.65 m/s)
|
0.15 J | |
| 100 mm |
105.14 km/h
(29.21 m/s)
|
0.29 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 5x2.7/1.2x5 S / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 5x2.7/1.2x5 S / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 862 Mx | 8.6 µWb |
| Współczynnik Pc | 0.83 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MP 5x2.7/1.2x5 S / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.75 kg | Standard |
| Woda (dno rzeki) |
0.86 kg
(+0.11 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.83
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- z wykorzystaniem blachy ze miękkiej stali, działającej jako element zamykający obwód
- której grubość to min. 10 mm
- z płaszczyzną idealnie równą
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – występowanie ciała obcego (farba, taśma, szczelina) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Nie wierć w magnesach
Proszek powstający podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach w warunkach domowych.
Kruchy spiek
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Implanty kardiologiczne
Pacjenci z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może rozregulować działanie implantu.
Niklowa powłoka a alergia
Część populacji posiada uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Rekomendujemy noszenie rękawiczek ochronnych.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Zakłócenia GPS i telefonów
Silne pole magnetyczne wpływa negatywnie na działanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Potężne pole
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Trwała utrata siły
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Uwaga: zadławienie
Neodymowe magnesy nie służą do zabawy. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
