MP 16x12x2 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030183
GTIN/EAN: 5906301812005
Średnica
16 mm [±0,1 mm]
Średnica wewnętrzna Ø
12 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
1.32 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.68 kg / 6.62 N
Indukcja magnetyczna
150.33 mT / 1503 Gs
Powłoka
[NiCuNi] nikiel
1.304 ZŁ z VAT / szt. + cena za transport
1.060 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo napisz poprzez
formularz kontaktowy
na stronie kontaktowej.
Właściwości a także wygląd magnesów neodymowych zobaczysz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane produktu - MP 16x12x2 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 16x12x2 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030183 |
| GTIN/EAN | 5906301812005 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 16 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 12 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 1.32 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.68 kg / 6.62 N |
| Indukcja magnetyczna ~ ? | 150.33 mT / 1503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Niniejsze wartości są rezultat symulacji fizycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MP 16x12x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6011 Gs
601.1 mT
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
niskie ryzyko |
| 1 mm |
5259 Gs
525.9 mT
|
0.52 kg / 1.15 lbs
520.7 g / 5.1 N
|
niskie ryzyko |
| 2 mm |
4534 Gs
453.4 mT
|
0.39 kg / 0.85 lbs
387.0 g / 3.8 N
|
niskie ryzyko |
| 3 mm |
3870 Gs
387.0 mT
|
0.28 kg / 0.62 lbs
281.9 g / 2.8 N
|
niskie ryzyko |
| 5 mm |
2776 Gs
277.6 mT
|
0.15 kg / 0.32 lbs
145.1 g / 1.4 N
|
niskie ryzyko |
| 10 mm |
1251 Gs
125.1 mT
|
0.03 kg / 0.06 lbs
29.4 g / 0.3 N
|
niskie ryzyko |
| 15 mm |
643 Gs
64.3 mT
|
0.01 kg / 0.02 lbs
7.8 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
372 Gs
37.2 mT
|
0.00 kg / 0.01 lbs
2.6 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
159 Gs
15.9 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
49 Gs
4.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MP 16x12x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| 1 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 3 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MP 16x12x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.20 kg / 0.45 lbs
204.0 g / 2.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 16x12x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 1 mm |
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 2 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 3 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 5 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 10 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 11 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 12 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MP 16x12x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
OK |
| 40 °C | -2.2% |
0.67 kg / 1.47 lbs
665.0 g / 6.5 N
|
OK |
| 60 °C | -4.4% |
0.65 kg / 1.43 lbs
650.1 g / 6.4 N
|
OK |
| 80 °C | -6.6% |
0.64 kg / 1.40 lbs
635.1 g / 6.2 N
|
|
| 100 °C | -28.8% |
0.48 kg / 1.07 lbs
484.2 g / 4.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 16x12x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
37.47 kg / 82.60 lbs
6 145 Gs
|
5.62 kg / 12.39 lbs
5620 g / 55.1 N
|
N/A |
| 1 mm |
32.95 kg / 72.65 lbs
11 273 Gs
|
4.94 kg / 10.90 lbs
4943 g / 48.5 N
|
29.66 kg / 65.38 lbs
~0 Gs
|
| 2 mm |
28.69 kg / 63.25 lbs
10 519 Gs
|
4.30 kg / 9.49 lbs
4303 g / 42.2 N
|
25.82 kg / 56.92 lbs
~0 Gs
|
| 3 mm |
24.81 kg / 54.69 lbs
9 781 Gs
|
3.72 kg / 8.20 lbs
3721 g / 36.5 N
|
22.33 kg / 49.22 lbs
~0 Gs
|
| 5 mm |
18.24 kg / 40.20 lbs
8 386 Gs
|
2.74 kg / 6.03 lbs
2735 g / 26.8 N
|
16.41 kg / 36.18 lbs
~0 Gs
|
| 10 mm |
7.99 kg / 17.62 lbs
5 552 Gs
|
1.20 kg / 2.64 lbs
1199 g / 11.8 N
|
7.19 kg / 15.86 lbs
~0 Gs
|
| 20 mm |
1.62 kg / 3.58 lbs
2 501 Gs
|
0.24 kg / 0.54 lbs
243 g / 2.4 N
|
1.46 kg / 3.22 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
471 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
318 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
225 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
166 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
126 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
98 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MP 16x12x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 16x12x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.50 km/h
(6.53 m/s)
|
0.03 J | |
| 30 mm |
39.66 km/h
(11.02 m/s)
|
0.08 J | |
| 50 mm |
51.19 km/h
(14.22 m/s)
|
0.13 J | |
| 100 mm |
72.39 km/h
(20.11 m/s)
|
0.27 J |
Tabela 9: Specyfikacja ochrony powierzchni
MP 16x12x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MP 16x12x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 11 219 Mx | 112.2 µWb |
| Współczynnik Pc | 1.22 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 16x12x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.68 kg | Standard |
| Woda (dno rzeki) |
0.78 kg
(+0.10 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki powłoce (nikiel, złoto, srebro) zyskują nowoczesny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- z płaszczyzną oczyszczoną i gładką
- przy zerowej szczelinie (brak powłok)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Udźwig w praktyce – czynniki wpływu
- Dystans – obecność ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość stali – zbyt cienka blacha nie przyjmuje całego pola, przez co część mocy ucieka na drugą stronę.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Nie dawać dzieciom
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Nie zbliżaj do komputera
Potężne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Limity termiczne
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Poważne obrażenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Kruchość materiału
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Ogromna siła
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Dla uczulonych
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Trzymaj z dala od elektroniki
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Wpływ na zdrowie
Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie implantu.
