MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030181
GTIN/EAN: 5906301811985
Średnica
14 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.18 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.53 kg / 24.85 N
Indukcja magnetyczna
244.11 mT / 2441 Gs
Powłoka
[NiCuNi] nikiel
2.47 ZŁ z VAT / szt. + cena za transport
2.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz kontaktowy
na stronie kontaktowej.
Siłę a także budowę magnesu neodymowego skontrolujesz u nas w
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Dane - MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030181 |
| GTIN/EAN | 5906301811985 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 14 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.53 kg / 24.85 N |
| Indukcja magnetyczna ~ ? | 244.11 mT / 2441 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Niniejsze wartości są rezultat kalkulacji matematycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MP 14x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2121 Gs
212.1 mT
|
2.53 kg / 2530.0 g
24.8 N
|
uwaga |
| 1 mm |
1927 Gs
192.7 mT
|
2.09 kg / 2090.1 g
20.5 N
|
uwaga |
| 2 mm |
1676 Gs
167.6 mT
|
1.58 kg / 1579.6 g
15.5 N
|
niskie ryzyko |
| 3 mm |
1410 Gs
141.0 mT
|
1.12 kg / 1117.9 g
11.0 N
|
niskie ryzyko |
| 5 mm |
943 Gs
94.3 mT
|
0.50 kg / 500.1 g
4.9 N
|
niskie ryzyko |
| 10 mm |
335 Gs
33.5 mT
|
0.06 kg / 63.3 g
0.6 N
|
niskie ryzyko |
| 15 mm |
140 Gs
14.0 mT
|
0.01 kg / 11.1 g
0.1 N
|
niskie ryzyko |
| 20 mm |
69 Gs
6.9 mT
|
0.00 kg / 2.7 g
0.0 N
|
niskie ryzyko |
| 30 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.3 g
0.0 N
|
niskie ryzyko |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MP 14x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.51 kg / 506.0 g
5.0 N
|
| 1 mm | Stal (~0.2) |
0.42 kg / 418.0 g
4.1 N
|
| 2 mm | Stal (~0.2) |
0.32 kg / 316.0 g
3.1 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 224.0 g
2.2 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 100.0 g
1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MP 14x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.76 kg / 759.0 g
7.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.51 kg / 506.0 g
5.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.25 kg / 253.0 g
2.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.27 kg / 1265.0 g
12.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MP 14x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.25 kg / 253.0 g
2.5 N
|
| 1 mm |
|
0.63 kg / 632.5 g
6.2 N
|
| 2 mm |
|
1.27 kg / 1265.0 g
12.4 N
|
| 5 mm |
|
2.53 kg / 2530.0 g
24.8 N
|
| 10 mm |
|
2.53 kg / 2530.0 g
24.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MP 14x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.53 kg / 2530.0 g
24.8 N
|
OK |
| 40 °C | -2.2% |
2.47 kg / 2474.3 g
24.3 N
|
OK |
| 60 °C | -4.4% |
2.42 kg / 2418.7 g
23.7 N
|
|
| 80 °C | -6.6% |
2.36 kg / 2363.0 g
23.2 N
|
|
| 100 °C | -28.8% |
1.80 kg / 1801.4 g
17.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 14x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.33 kg / 3332 g
32.7 N
3 647 Gs
|
N/A |
| 1 mm |
3.07 kg / 3067 g
30.1 N
4 070 Gs
|
2.76 kg / 2761 g
27.1 N
~0 Gs
|
| 2 mm |
2.75 kg / 2752 g
27.0 N
3 855 Gs
|
2.48 kg / 2477 g
24.3 N
~0 Gs
|
| 3 mm |
2.42 kg / 2416 g
23.7 N
3 612 Gs
|
2.17 kg / 2174 g
21.3 N
~0 Gs
|
| 5 mm |
1.76 kg / 1762 g
17.3 N
3 084 Gs
|
1.59 kg / 1586 g
15.6 N
~0 Gs
|
| 10 mm |
0.66 kg / 659 g
6.5 N
1 886 Gs
|
0.59 kg / 593 g
5.8 N
~0 Gs
|
| 20 mm |
0.08 kg / 83 g
0.8 N
671 Gs
|
0.08 kg / 75 g
0.7 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
77 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 14x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 14x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.89 km/h
(8.02 m/s)
|
0.10 J | |
| 30 mm |
49.27 km/h
(13.69 m/s)
|
0.30 J | |
| 50 mm |
63.61 km/h
(17.67 m/s)
|
0.50 J | |
| 100 mm |
89.96 km/h
(24.99 m/s)
|
0.99 J |
Tabela 9: Odporność na korozję
MP 14x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 14x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 101 Mx | 31.0 µWb |
| Współczynnik Pc | 0.28 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 14x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.53 kg | Standard |
| Woda (dno rzeki) |
2.90 kg
(+0.37 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.28
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy komputery.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (bez powłok)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka blacha nie zamyka strumienia, przez co część strumienia jest tracona w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ogromna siła
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca działanie kompasów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Limity termiczne
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Dla uczulonych
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Kruchy spiek
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Ryzyko złamań
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni pomiędzy dwa silne magnesy.
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
