MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030181
GTIN/EAN: 5906301811985
Średnica
14 mm [±0,1 mm]
Średnica wewnętrzna Ø
8/4 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.18 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.53 kg / 24.85 N
Indukcja magnetyczna
244.11 mT / 2441 Gs
Powłoka
[NiCuNi] nikiel
2.47 ZŁ z VAT / szt. + cena za transport
2.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie pisz poprzez
nasz formularz online
przez naszą stronę.
Właściwości oraz budowę magnesu obliczysz w naszym
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja techniczna produktu - MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 14x8/4x3 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030181 |
| GTIN/EAN | 5906301811985 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 14 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 8/4 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.18 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.53 kg / 24.85 N |
| Indukcja magnetyczna ~ ? | 244.11 mT / 2441 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione dane stanowią rezultat analizy fizycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MP 14x8/4x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2121 Gs
212.1 mT
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
uwaga |
| 1 mm |
1927 Gs
192.7 mT
|
2.09 kg / 4.61 lbs
2090.1 g / 20.5 N
|
uwaga |
| 2 mm |
1676 Gs
167.6 mT
|
1.58 kg / 3.48 lbs
1579.6 g / 15.5 N
|
bezpieczny |
| 3 mm |
1410 Gs
141.0 mT
|
1.12 kg / 2.46 lbs
1117.9 g / 11.0 N
|
bezpieczny |
| 5 mm |
943 Gs
94.3 mT
|
0.50 kg / 1.10 lbs
500.1 g / 4.9 N
|
bezpieczny |
| 10 mm |
335 Gs
33.5 mT
|
0.06 kg / 0.14 lbs
63.3 g / 0.6 N
|
bezpieczny |
| 15 mm |
140 Gs
14.0 mT
|
0.01 kg / 0.02 lbs
11.1 g / 0.1 N
|
bezpieczny |
| 20 mm |
69 Gs
6.9 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
bezpieczny |
| 30 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
bezpieczny |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 14x8/4x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.51 kg / 1.12 lbs
506.0 g / 5.0 N
|
| 1 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 2 mm | Stal (~0.2) |
0.32 kg / 0.70 lbs
316.0 g / 3.1 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
224.0 g / 2.2 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 14x8/4x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.76 kg / 1.67 lbs
759.0 g / 7.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.51 kg / 1.12 lbs
506.0 g / 5.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.25 kg / 0.56 lbs
253.0 g / 2.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.27 kg / 2.79 lbs
1265.0 g / 12.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MP 14x8/4x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.25 kg / 0.56 lbs
253.0 g / 2.5 N
|
| 1 mm |
|
0.63 kg / 1.39 lbs
632.5 g / 6.2 N
|
| 2 mm |
|
1.27 kg / 2.79 lbs
1265.0 g / 12.4 N
|
| 3 mm |
|
1.90 kg / 4.18 lbs
1897.5 g / 18.6 N
|
| 5 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 10 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 11 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 12 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MP 14x8/4x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
OK |
| 40 °C | -2.2% |
2.47 kg / 5.45 lbs
2474.3 g / 24.3 N
|
OK |
| 60 °C | -4.4% |
2.42 kg / 5.33 lbs
2418.7 g / 23.7 N
|
|
| 80 °C | -6.6% |
2.36 kg / 5.21 lbs
2363.0 g / 23.2 N
|
|
| 100 °C | -28.8% |
1.80 kg / 3.97 lbs
1801.4 g / 17.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MP 14x8/4x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.33 kg / 7.34 lbs
3 647 Gs
|
0.50 kg / 1.10 lbs
500 g / 4.9 N
|
N/A |
| 1 mm |
3.07 kg / 6.76 lbs
4 070 Gs
|
0.46 kg / 1.01 lbs
460 g / 4.5 N
|
2.76 kg / 6.09 lbs
~0 Gs
|
| 2 mm |
2.75 kg / 6.07 lbs
3 855 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.0 N
|
2.48 kg / 5.46 lbs
~0 Gs
|
| 3 mm |
2.42 kg / 5.33 lbs
3 612 Gs
|
0.36 kg / 0.80 lbs
362 g / 3.6 N
|
2.17 kg / 4.79 lbs
~0 Gs
|
| 5 mm |
1.76 kg / 3.88 lbs
3 084 Gs
|
0.26 kg / 0.58 lbs
264 g / 2.6 N
|
1.59 kg / 3.50 lbs
~0 Gs
|
| 10 mm |
0.66 kg / 1.45 lbs
1 886 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.31 lbs
~0 Gs
|
| 20 mm |
0.08 kg / 0.18 lbs
671 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
77 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MP 14x8/4x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MP 14x8/4x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.89 km/h
(8.02 m/s)
|
0.10 J | |
| 30 mm |
49.27 km/h
(13.69 m/s)
|
0.30 J | |
| 50 mm |
63.61 km/h
(17.67 m/s)
|
0.50 J | |
| 100 mm |
89.96 km/h
(24.99 m/s)
|
0.99 J |
Tabela 9: Parametry powłoki (trwałość)
MP 14x8/4x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MP 14x8/4x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 101 Mx | 31.0 µWb |
| Współczynnik Pc | 0.28 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MP 14x8/4x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.53 kg | Standard |
| Woda (dno rzeki) |
2.90 kg
(+0.37 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.28
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
UMP 75x25 [M10x3] GW F200 GOLD DUAL / N42 - uchwyty magnetyczne do poszukiwań
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Dzięki powłoce (NiCuNi, złoto, Ag) mają estetyczny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną wolną od rys
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Dystans (między magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Struktura powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
Bezpieczna praca z magnesami neodymowymi
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Moc przyciągania
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Niklowa powłoka a alergia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Limity termiczne
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
To nie jest zabawka
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Elektronika precyzyjna
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Siła zgniatająca
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Niebezpieczeństwo dla rozruszników
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
