MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030179
GTIN/EAN: 5906301811961
Średnica
10 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
1.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.79 kg / 17.55 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie skontaktuj się przez
formularz zgłoszeniowy
przez naszą stronę.
Parametry i wygląd magnesów neodymowych sprawdzisz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja techniczna produktu - MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030179 |
| GTIN/EAN | 5906301811961 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 10 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 1.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.79 kg / 17.55 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Przedstawione dane są rezultat symulacji inżynierskiej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MP 10x6x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6115 Gs
611.5 mT
|
1.79 kg / 1790.0 g
17.6 N
|
słaby uchwyt |
| 1 mm |
4915 Gs
491.5 mT
|
1.16 kg / 1156.7 g
11.3 N
|
słaby uchwyt |
| 2 mm |
3833 Gs
383.3 mT
|
0.70 kg / 703.2 g
6.9 N
|
słaby uchwyt |
| 3 mm |
2949 Gs
294.9 mT
|
0.42 kg / 416.3 g
4.1 N
|
słaby uchwyt |
| 5 mm |
1761 Gs
176.1 mT
|
0.15 kg / 148.5 g
1.5 N
|
słaby uchwyt |
| 10 mm |
612 Gs
61.2 mT
|
0.02 kg / 17.9 g
0.2 N
|
słaby uchwyt |
| 15 mm |
284 Gs
28.4 mT
|
0.00 kg / 3.9 g
0.0 N
|
słaby uchwyt |
| 20 mm |
157 Gs
15.7 mT
|
0.00 kg / 1.2 g
0.0 N
|
słaby uchwyt |
| 30 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MP 10x6x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.36 kg / 358.0 g
3.5 N
|
| 1 mm | Stal (~0.2) |
0.23 kg / 232.0 g
2.3 N
|
| 2 mm | Stal (~0.2) |
0.14 kg / 140.0 g
1.4 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MP 10x6x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.54 kg / 537.0 g
5.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.36 kg / 358.0 g
3.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.18 kg / 179.0 g
1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.90 kg / 895.0 g
8.8 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MP 10x6x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.18 kg / 179.0 g
1.8 N
|
| 1 mm |
|
0.45 kg / 447.5 g
4.4 N
|
| 2 mm |
|
0.90 kg / 895.0 g
8.8 N
|
| 5 mm |
|
1.79 kg / 1790.0 g
17.6 N
|
| 10 mm |
|
1.79 kg / 1790.0 g
17.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MP 10x6x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.79 kg / 1790.0 g
17.6 N
|
OK |
| 40 °C | -2.2% |
1.75 kg / 1750.6 g
17.2 N
|
OK |
| 60 °C | -4.4% |
1.71 kg / 1711.2 g
16.8 N
|
OK |
| 80 °C | -6.6% |
1.67 kg / 1671.9 g
16.4 N
|
|
| 100 °C | -28.8% |
1.27 kg / 1274.5 g
12.5 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MP 10x6x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.93 kg / 12926 g
126.8 N
6 169 Gs
|
N/A |
| 1 mm |
10.50 kg / 10505 g
103.1 N
11 025 Gs
|
9.45 kg / 9454 g
92.7 N
~0 Gs
|
| 2 mm |
8.35 kg / 8353 g
81.9 N
9 831 Gs
|
7.52 kg / 7518 g
73.7 N
~0 Gs
|
| 3 mm |
6.55 kg / 6547 g
64.2 N
8 703 Gs
|
5.89 kg / 5892 g
57.8 N
~0 Gs
|
| 5 mm |
3.91 kg / 3913 g
38.4 N
6 729 Gs
|
3.52 kg / 3522 g
34.5 N
~0 Gs
|
| 10 mm |
1.07 kg / 1072 g
10.5 N
3 522 Gs
|
0.96 kg / 965 g
9.5 N
~0 Gs
|
| 20 mm |
0.13 kg / 129 g
1.3 N
1 223 Gs
|
0.12 kg / 116 g
1.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
194 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MP 10x6x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MP 10x6x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.94 km/h
(9.71 m/s)
|
0.07 J | |
| 30 mm |
60.15 km/h
(16.71 m/s)
|
0.21 J | |
| 50 mm |
77.64 km/h
(21.57 m/s)
|
0.35 J | |
| 100 mm |
109.80 km/h
(30.50 m/s)
|
0.70 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MP 10x6x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MP 10x6x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 017 Mx | 40.2 µWb |
| Współczynnik Pc | 1.44 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MP 10x6x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.79 kg | Standard |
| Woda (dno rzeki) |
2.05 kg
(+0.26 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z wykorzystaniem podłoża ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni styku
- przy zerowej szczelinie (bez farby)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża nośność.
Zasady BHP dla użytkowników magnesów
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Moc przyciągania
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Niklowa powłoka a alergia
Część populacji ma uczulenie na nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może wywołać silną reakcję alergiczną. Zalecamy używanie rękawic bezlateksowych.
Zagrożenie dla nawigacji
Pamiętaj: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Nośniki danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Chronić przed dziećmi
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od niepowołanych osób.
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
