MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
magnes neodymowy pierścieniowy
Numer katalogowy 030179
GTIN/EAN: 5906301811961
Średnica
10 mm [±0,1 mm]
Średnica wewnętrzna Ø
6 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
1.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.79 kg / 17.55 N
Indukcja magnetyczna
386.91 mT / 3869 Gs
Powłoka
[NiCuNi] nikiel
0.898 ZŁ z VAT / szt. + cena za transport
0.730 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub skontaktuj się poprzez
formularz kontaktowy
na stronie kontakt.
Siłę i formę magnesów przetestujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
Specyfikacja / charakterystyka - MP 10x6x4 / N38 - magnes neodymowy pierścieniowy
| właściwości | wartości |
|---|---|
| Nr kat. | 030179 |
| GTIN/EAN | 5906301811961 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica | 10 mm [±0,1 mm] |
| Średnica wewnętrzna Ø | 6 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 1.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.79 kg / 17.55 N |
| Indukcja magnetyczna ~ ? | 386.91 mT / 3869 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Poniższe dane stanowią bezpośredni efekt symulacji fizycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MP 10x6x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6115 Gs
611.5 mT
|
1.79 kg / 1790.0 g
17.6 N
|
słaby uchwyt |
| 1 mm |
4915 Gs
491.5 mT
|
1.16 kg / 1156.7 g
11.3 N
|
słaby uchwyt |
| 2 mm |
3833 Gs
383.3 mT
|
0.70 kg / 703.2 g
6.9 N
|
słaby uchwyt |
| 3 mm |
2949 Gs
294.9 mT
|
0.42 kg / 416.3 g
4.1 N
|
słaby uchwyt |
| 5 mm |
1761 Gs
176.1 mT
|
0.15 kg / 148.5 g
1.5 N
|
słaby uchwyt |
| 10 mm |
612 Gs
61.2 mT
|
0.02 kg / 17.9 g
0.2 N
|
słaby uchwyt |
| 15 mm |
284 Gs
28.4 mT
|
0.00 kg / 3.9 g
0.0 N
|
słaby uchwyt |
| 20 mm |
157 Gs
15.7 mT
|
0.00 kg / 1.2 g
0.0 N
|
słaby uchwyt |
| 30 mm |
64 Gs
6.4 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MP 10x6x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.36 kg / 358.0 g
3.5 N
|
| 1 mm | Stal (~0.2) |
0.23 kg / 232.0 g
2.3 N
|
| 2 mm | Stal (~0.2) |
0.14 kg / 140.0 g
1.4 N
|
| 3 mm | Stal (~0.2) |
0.08 kg / 84.0 g
0.8 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MP 10x6x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.54 kg / 537.0 g
5.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.36 kg / 358.0 g
3.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.18 kg / 179.0 g
1.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.90 kg / 895.0 g
8.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MP 10x6x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.18 kg / 179.0 g
1.8 N
|
| 1 mm |
|
0.45 kg / 447.5 g
4.4 N
|
| 2 mm |
|
0.90 kg / 895.0 g
8.8 N
|
| 5 mm |
|
1.79 kg / 1790.0 g
17.6 N
|
| 10 mm |
|
1.79 kg / 1790.0 g
17.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MP 10x6x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.79 kg / 1790.0 g
17.6 N
|
OK |
| 40 °C | -2.2% |
1.75 kg / 1750.6 g
17.2 N
|
OK |
| 60 °C | -4.4% |
1.71 kg / 1711.2 g
16.8 N
|
OK |
| 80 °C | -6.6% |
1.67 kg / 1671.9 g
16.4 N
|
|
| 100 °C | -28.8% |
1.27 kg / 1274.5 g
12.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MP 10x6x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.93 kg / 12926 g
126.8 N
6 169 Gs
|
N/A |
| 1 mm |
10.50 kg / 10505 g
103.1 N
11 025 Gs
|
9.45 kg / 9454 g
92.7 N
~0 Gs
|
| 2 mm |
8.35 kg / 8353 g
81.9 N
9 831 Gs
|
7.52 kg / 7518 g
73.7 N
~0 Gs
|
| 3 mm |
6.55 kg / 6547 g
64.2 N
8 703 Gs
|
5.89 kg / 5892 g
57.8 N
~0 Gs
|
| 5 mm |
3.91 kg / 3913 g
38.4 N
6 729 Gs
|
3.52 kg / 3522 g
34.5 N
~0 Gs
|
| 10 mm |
1.07 kg / 1072 g
10.5 N
3 522 Gs
|
0.96 kg / 965 g
9.5 N
~0 Gs
|
| 20 mm |
0.13 kg / 129 g
1.3 N
1 223 Gs
|
0.12 kg / 116 g
1.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
194 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MP 10x6x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MP 10x6x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.94 km/h
(9.71 m/s)
|
0.07 J | |
| 30 mm |
60.15 km/h
(16.71 m/s)
|
0.21 J | |
| 50 mm |
77.64 km/h
(21.57 m/s)
|
0.35 J | |
| 100 mm |
109.80 km/h
(30.50 m/s)
|
0.70 J |
Tabela 9: Odporność na korozję
MP 10x6x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MP 10x6x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 017 Mx | 40.2 µWb |
| Współczynnik Pc | 1.44 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MP 10x6x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.79 kg | Standard |
| Woda (dno rzeki) |
2.05 kg
(+0.26 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Dzięki powłoce (nikiel, Au, srebro) mają nowoczesny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- w warunkach bezszczelinowych (metal do metalu)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig mierzono z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Ostrzeżenia
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.
Łatwopalność
Pył generowany podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Rozruszniki serca
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Poważne obrażenia
Silne magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa przyciągające się elementy.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Karty i dyski
Potężne oddziaływanie może usunąć informacje na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Nadwrażliwość na metale
Pewna grupa użytkowników ma nadwrażliwość na nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Wskazane jest stosowanie rękawiczek ochronnych.
Nie przegrzewaj magnesów
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
