UMGGW 29x8 [M4] GW / N38 - uchwyt magnetyczny gumowy gwint wewnętrzny
uchwyt magnetyczny gumowy gwint wewnętrzny
Numer katalogowy 160305
GTIN/EAN: 5906301813637
Średnica Ø
29 mm [±1 mm]
Wysokość
8 mm [±1 mm]
Waga
18 g
Udźwig
6.40 kg / 62.76 N
8.61 ZŁ z VAT / szt. + cena za transport
7.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
alternatywnie daj znać za pomocą
formularz zgłoszeniowy
na naszej stronie.
Udźwig oraz formę elementów magnetycznych testujesz u nas w
narzędziu online do obliczeń.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry produktu - UMGGW 29x8 [M4] GW / N38 - uchwyt magnetyczny gumowy gwint wewnętrzny
Specyfikacja / charakterystyka - UMGGW 29x8 [M4] GW / N38 - uchwyt magnetyczny gumowy gwint wewnętrzny
| właściwości | wartości |
|---|---|
| Nr kat. | 160305 |
| GTIN/EAN | 5906301813637 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 29 mm [±1 mm] |
| Wysokość | 8 mm [±1 mm] |
| Waga | 18 g |
| Udźwig ~ ? | 6.40 kg / 62.76 N |
| Tolerancja wykonania | ±1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- z powierzchnią idealnie równą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Nie dawać dzieciom
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Maksymalna temperatura
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Ochrona oczu
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często szybciej niż zdążysz zareagować.
Smartfony i tablety
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
