magnesy neodymowe

Neodymowe magnesy co to? Na spisie poniżej znajdziesz wszystkie neodymowe magnesy, aktualnie dostępne w magazynie zobacz ofertę magnesów

magnesy do poszukiwań w wodzie F300 POWER z silnym uchem bocznym i liną

Gdzie kupić silny UM magnes neodymowy do poszukiwań? Uchwyty z magnesów w szczelnej, solidnej stalowej obudowie nadają się doskonale do użytkowania w niesprzyjających warunkach pogodowych, między innymi w deszczu i podczas śniegu więcej informacji...

uchwyty magnetyczne

Uchwyty magnetyczne mogą być stosowane do ułatwienia procesów produkcyjnych, odkrywania wody lub do znajdowania skał kosmicznych ze złota. Mocowania to śruba 3x [M10] duży udźwig sprawdź ofertę...

Ciesz się wysyłką zamówienia w dniu zakupu jeśli zlecenie przyjęte jest do godziny 14:00 w dni robocze.

logo Dhit sp. z o.o.
Produkt dostępny wysyłka jutro

SM 18x225 [2xM5] / N42 - separator magnetyczny

separator magnetyczny

Numer katalogowy 130274

GTIN: 5906301812760

0

Średnica Ø [±0,1 mm]

18 mm

Wysokość [±0,1 mm]

225 mm

Waga

0.01 g

498.15 z VAT / szt. + cena za transport

405.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
405.00 ZŁ
498.15 ZŁ
cena od 10 szt.
384.75 ZŁ
473.24 ZŁ
cena od 15 szt.
364.50 ZŁ
448.34 ZŁ

Nie jesteś pewien wyboru?

Zadzwoń i zapytaj +48 888 99 98 98 albo skontaktuj się korzystając z formularz przez naszą stronę.
Siłę oraz budowę magnesu neodymowego sprawdzisz w naszym narzędziu online do obliczeń.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

SM 18x225 [2xM5] / N42 - separator magnetyczny

Specyfikacja/charakterystyka SM 18x225 [2xM5] / N42 - separator magnetyczny
właściwości
wartości
Nr kat.
130274
GTIN
5906301812760
Produkcja/Dystrybucja
Dhit sp. z o.o.
Kraj pochodzenia
Polska / Chiny / Niemcy
Kod celny
85059029
Średnica Ø
18 mm [±0,1 mm]
Wysokość
225 mm [±0,1 mm]
Waga
0.01 g [±0,1 mm]
Tolerancja wykonania
± 0.1 mm

Własności magnetyczne materiału N42

właściwości
wartości
jednostki
remanencja Br [Min. - Max.] ?
12.9-13.2
kGs
remanencja Br [Min. - Max.] ?
1290-1320
T
koercja bHc ?
10.8-12.0
kOe
koercja bHc ?
860-955
kA/m
faktyczna wewnętrzna siła iHc
≥ 12
kOe
faktyczna wewnętrzna siła iHc
≥ 955
kA/m
gęstość energii [Min. - Max.] ?
40-42
BH max MGOe
gęstość energii [Min. - Max.] ?
318-334
BH max KJ/m
max. temperatura ?
≤ 80
°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

właściwości
wartości
jednostki
Twardość Vickersa
≥550
Hv
Gęstość
≥7.4
g/cm3
Curie Temperatura TC
312 - 380
°C
Curie Temperatura TF
593 - 716
°F
Specyficzna oporność
150
μΩ⋅Cm
Siła wyginania
250
Mpa
Wytrzymałość na ściskanie
1000~1100
Mpa
Rozszerzenie termiczne równoległe (∥) do orientacji (M)
(3-4) x 106
°C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M)
-(1-3) x 10-6
°C-1
Moduł Younga
1.7 x 104
kg/mm²

Porady zakupowe

Wkład do szuflad magnetycznych, znany także jako walec magnetyczny, wykorzystuje moc silnych magnesów NdFeB, umieszczonych w rurze ze stali nierdzewnej AISI304. Umożliwia wyłapywania cząstek ferromagnetycznych z materiałów sypkich, takich jak granulaty. Mechanizm opiera się na oddziaływaniu biegunów N i S, które skutecznie przyciągają metaliczne zanieczyszczenia. Grubość wałka i odległości między magnesami określają zasięg pola magnetycznego. Tego typu wkłady są powszechnie stosowane w branży chemicznej, zapewniając niezawodne filtrowanie. Jego konstrukcja umożliwia łatwy montaż w szufladach magnetycznych, oferując wyjątkowo mocny efekt magnetyczny nawet w środowisku o wysokim zapyleniu.
Ogólnie rzecz biorąc, separatory magnetyczne są przeznaczone do oddzielania cząstek ferromagnetycznych. Jeśli puszki są wykonane z materiałów ferromagnetycznych, separator efektywnie je wysegreguje. Ale, jeśli puszki są wykonane z materiałów nieferromagnetycznych, takich jak aluminium, segregator nie wysegreguje ich efektywnie.
Tak, wałki magnetyczne znajdują zastosowanie w sektorze żywnościowym aby oczyścić z zanieczyszczeń metalowych, na przykład żelazne odłamki czy pył żelazny. Nasze pręty magnetyczne zbudowane są ze stali kwasoodpornej, EN 1.4301, dopuszczonej do styczności z żywnością.
Wałki magnetyczne, często nazywane separatorami magnetycznymi, są używane w produkcji żywności, separacji metali oraz przetwarzaniu odpadów. Pomagają one w wydobywaniu pyłu żelaznego podczas procesu separacji metali z innych materiałów.
Nasze wałki magnetyczne są zbudowane z neodymowego magnesu zakotwiczonego w rurce z nierzewnej stali grubość ścianki 1mm.
Oba końce wałka magnetycznego mogą być otworami z gwintem M8 - 18 mm, co pozwala na szybką instalację w maszynach lub szufladach filtrów magnetycznych. Możliwa jest również wersja "ślepa" przy separatorach ręcznych.
Pod względem właściwości magnetycznych, wałki różnią się jeśli chodzi o gęstości strumienia indukcji, linii sił magnetycznych oraz obszaru działania magnetycznego. Produkujemy je w materiałach N42 i N52.
Zazwyczaj uważa się, że im większa moc magnesu, tym lepiej. Natomiast, efektywność mocy magnesu jest uzależniona od od wysokości zastosowanego magnesu oraz jakości materiału [N42] czy [N52], jak również zależy to od obszaru aplikacji oraz oczekiwanych potrzeb. Standardowa temperatura pracy wałka magnetycznego to 80°C.
W przypadku gdy magnes jest bardziej płaski, linie sił magnetycznych są bardziej skompresowane. Natomiast, jeśli chodzi o grubszy magnes, linie sił są dłuższe i rozciągają się na większą odległość.
Do budowy obudów separatorów magnetycznych - wałków, często używa się stal nierdzewną, szczególnie typy AISI 316, AISI 316L i AISI 304.
W kontakcie z słoną wodą, stal AISI 316 jest najbardziej polecana dzięki jej znakomitym właściwościom przeciwdziałającym korozji.
Wałki magnetyczne wyróżniają się specyficznym układem biegunów oraz zdolnością przyciągania substancji magnetycznych bezpośrednio na ich powierzchni, w przeciwieństwie do pozostałych urządzeń które mogą wykorzystywać złożone systemy filtracji.
Techniczne oznaczenia i terminy związane z separatorów magnetycznych obejmują m.in. biegunowości, indukcji magnetycznej, skoku magnesów oraz typu stali zastosowanej.
Indukcję magnetyczną magnesu na wałku pomiar przeprowadza się za pomocą teslametru czy gaussomierza z hallotronową sondą płaską, szukając najwyższej wartości pola magnetycznego w pobliżu bieguna magnetycznego. Wynik weryfikujemy w tabeli wartości – najmniejsza to N30. Wszystkie oznaczenia niżej N27 czy N25 wskazują na recykling nie spełniający normy - nie nadają się.
Korzystanie z neodymowych wałków magnetycznych przynosi szereg korzyści, takich jak wyższą moc przyciągania, dłuższą żywotność oraz skuteczność w oddzielaniu drobnych cząstek metali. Z drugiej strony, wśród wad można wymienić wyższą cenę w porównaniu z innymi rodzajami magnesów oraz konieczność regularnej konserwacji.
Aby odpowiednio konserwować neodymowych wałków magnetycznych, zaleca się należy je regularnie czyścić, unikając temperatur powyżej 80 stopni. Wałki posiadają wodoodporność IP67, więc jeśli są nieszczelne, magnesy wewnątrz mogą zardzewieć i osłabnąć. Pomiary pola magnetycznego należy przeprowadzać raz na 24 miesiące. Trzeba zachować ostrożność, gdyż istnieje ryzyko poszkodowania palców. Jeśli rura osłonowa ma grubość tylko 0,5 mm, może dojść do jej przecierania, co z kolei może spowodować problemy z rozszczelnieniem pręta magnetycznego i zanieczyszczeniem produktu. Skuteczny zasięg działania wałka jest równy jego średnicy fi25mm to około 25mm aktywny zasięg dla fi32 to około 40mm.
Wałek magnetyczny to separator magnetyczny wykonany z magnesu neodymowego zamkniętego w cylindrycznej obudowie ze stali nierdzewnej, służące do separacji ferromagnetycznych zanieczyszczeń z surowców. Znajdują zastosowanie w przemyśle spożywczym, recyklingu oraz przetwórstwie tworzyw sztucznych, gdzie niezbędne jest usunięcie metali żelaznych i opiłków żelaza.

Wady oraz zalety magnesów neodymowych NdFeB.

Poza ich znaczną siłą, komponenty magnetyczne wykazują korzyściami:

  • Ich siła jest stabilna, a po około 10 latach spada jedynie o ~1% (teoretycznie),
  • Magnesy wyjątkowo dobrze zabezpieczają się przed rozmagnesowaniem spowodowaną polami zewnętrznymi,
  • Poprzez zastosowanie ozdobnej warstwy z niklu, element ma efektowny wygląd,
  • Dzięki strukturze magnetycznej, magnesy posiadają wysoką indukcją magnetyczną przy powierzchni kontaktu,
  • Wykonane z odpowiednio dobranych składników, magnesy te wykazują imponującą odporność na wysoką temperaturę, co umożliwia im działanie (zależnie od ich formy) w temperaturach aż do 230°C i wyżej...
  • W kontekście możliwość dokładnego formowania oraz adaptacji do nietypowych rozwiązań, magnesy neodymowe mogą być formowane w bogatej palecie struktur i formatów, co amplifikuje zakres użycia,
  • Istotne miejsce w innowacyjnych rozwiązaniach – są stosowane w pamięciach magnetycznych, mechanizmach elektromotorycznych, systemach diagnostycznych, a także maszynach przemysłowych.
  • Stosunkowo niewielkie rozmiary przy dużej sile przyciągania – magnesy neodymowe oferują dużą moc w małych wymiarach, co umożliwia ich użycie w miniaturowych urządzeniach

Problemowe aspekty magnesów neodymowych: wskazówki i zastosowania.

  • Z powodu ich delikatności mogą pękać przy mocnych uderzeniach. Radzimy stosowanie metalowych obudów do ich ochrony, co jednocześnie zwiększa ich trwałość.,
  • Potrzebujesz magnesów odpornych na wysokie temperatury? Wiemy, że tradycyjne magnesy neodymowe mogą słabnąć powyżej 80°C. Dlatego stworzyliśmy magnesy [AH], które działają bez zarzutu nawet w 230°C,
  • Utleniają się w wilgotnym środowisku. Do użytku na zewnątrz sugerujemy stosowanie wodoodpornych magnesów np. w gumie, plastiku,
  • Zalecamy pokrywę - mechanizm magnetyczny, ze względu na trudności w produkcji gwintów wewnątrz magnesu oraz bardziej skomplikowanych kształtów.
  • Możliwe niebezpieczeństwo dla zdrowia – drobne odłamki magnesów stanowią zagrożenie, w przypadku ich połknięcia, co nabiera znaczenia w kontekście ochrony zdrowia dzieci. Dodatkowo, małe elementy tych urządzeń potrafią być problematyczne w diagnostyce medycznej po przedostaniu się do ciała.
  • Przy masowej produkcji koszt magnesów neodymowych jest nieopłacalny ekonomicznie,

Najlepsza nośność magnesu w idealnych parametrachco się na to składa?

Podana siła przyciągania magnesu odpowiada maksymalną siłę, określona w idealnych warunkach, a mianowicie:

  • przy zastosowaniu płyty stalowej o niskiej zawartości węgla, działającej jako zamknięcie obwodu magnetycznego
  • posiadającej wymiar przynajmniej 10 milimetrów
  • o gładkiej powierzchni
  • przy braku przerwy
  • przy perpendykularnym kierunku działania siły
  • w normalnych warunkach termicznych

Udźwig magnesu w użyciu – kluczowe czynniki

W praktyce nośność magnesu jest uwarunkowana przez te czynniki, od priorytetowych do drugorzędnych:

  • Szczelina pomiędzy magnesem a blachą, gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje spadek udźwigu nawet o 50%.
  • Kierunek działania siły, ponieważ największy udźwig osiągamy przy prostopadłym przyłożeniu. Siła potrzebna do przesunięcia magnesu po blachach jest zazwyczaj kilkukrotnie mniejsza.
  • Grubość blachy, gdyż zbyt cienka płyta sprawia, że część strumienia magnetycznego nie jest wykorzystana i pozostaje bezużytecznie w powietrzu.
  • Materiał blachy, ponieważ większa zawartość węgla obniża nośność, a wyższa zawartość żelaza ją podnosi. Najlepszym wyborem jest stal o wysokiej przenikalności magnetycznej i dużym nasyceniu pola.
  • Powierzchnia blachy, ponieważ im bardziej gładka i polerowana, tym lepsze przyleganie i w konsekwencji większe nasycenie polem magnetycznym.
  • Temperatura pracy, gdyż wszystkie magnesy stałe mają ujemny współczynnik temperaturowy. Oznacza to, że w wysokich temperaturach są słabsze, a w ujemnych nieco silniejsze.

* Udźwig mierzono używając gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza siłę trzymania.

Uwaga przy magnesach neodymowych

Neodymowe magnesy mogą zostać rozmagnesowane w dużych temperaturach.

Choć wiemy, że magnesy dały dowody, że mają swoją skuteczność nawet do 80°C lub 175°F, temperatura ta może zmieniać się w zależności od rodzaju materiału, kształtu oraz zastosowania wybranego magnesu.

Magnesy neodymowe są najmocniejszymi magnesami, jakie zostały stworzone. Ich siła może Ciebie zszokować.

Prosimy zapoznać się z informacjami jak posługiwać się z magnesami neodymowymi i stronić od niepotrzebnych poważnych naruszeń ciała i, aby przypadkowo nie uszkodzić magnesy.

 Istotne, aby magnesy neodymowe nie znalazły się w okolicy dzieci.

Nie wszystkie neodymowe magnesy są zabawkami, dlatego nie pozwól, by dzieci się nimi bawiły. W przypadku niewielkich magnesów może dojść do ich połknięcia i następnie zadławienia. W takim przypadku jedynym ratunkiem jest operacja usunięcia magnesów, a w przeciwnym przypadku nawet śmierć.

Nie zbliżaj magnesów neodymowych do TV, portfela i dysku twardego komputera.

Silne pole magnetyczne, które jest emitowane przez magnesy neodymowe może być powodem zniszczenia nośników magnetycznych takich jak np. dyskietki, karty kredytowe, magnetyczne karty identyfikacyjne, taśmy kasetowe, taśmy wideo lub inne urządzenia. Mogą również uszkadzać telewizory, magnetowidy, monitory komputerowe oraz wyświetlacze CRT. Unikaj umieszczania magnesów neodymowych w pobliżu urządzeń elektronicznych.

Pyły tz. proszek z magnesów neodymowych są łatwopalne

Unikaj wiercenia bądź obróbki mechanicznej magnesów neodymowych. Jeśli pokruszysz magnes w drobny mak lub pył, wówczas powstanie materiał bardzo łatwopalny.

Powłoka magnesu to nikiel uważaj na alergie na nikiel.

Badania wyraźnie pokazują mały odsetek osób, które cierpią na alergię na metale takie jak nikiel. W chwili reakcji alergicznej częstym objawem jest zaczerwienienie oraz wysypka skórna. Jeśli cierpisz na alergię na nikiel, spróbuj ubrać rękawiczki bądź unikać bezpośredniego kontaktu z niklowanymi neodymowymi magnesami.

Osobom z rozrusznikiem serca nie zaleca się magnesów neodymowych.

Magnesy neodymowe wytwarzają silne pole magnetyczne. Skutkiem tego jest zakłócanie pracy symulatora serca. Dzieje się tak, ponieważ wiele z tych urządzeń jest wyposażonych w funkcję, która deaktywuje urządzenie w polu magnetycznym.

Nie zbliżaj magnesów neodymowych do GPSa i smartfona.

Silne pole magnetyczne, które wytwarzają magnesy neodymowe powoduje zaburzenia takich urządzeń jak kompasy, magnetometry, które są używane w nawigacji. Wykorzystuje się je także wewnątrz każdego telefonu i nawigacji GPS.

Neodymowe magnesy są bardzo łamliwe, będą pęknąć i się kruszyć.

Magnesy są kruche oraz będą się kruszyć, jeśli pozwolimy im uderzyć ze sobą, nawet z odległości kilku centymetrów. Mimo, że są wykonane z metalu i pokryte błyszczącym niklowaniem, nie są tak twarde jak stal. W sytuacji zderzenia się dwóch magnesów może dojść do sytuacji rozstrzału kawałeczków w różnych kierunkach. W takiej sytuacji koniecznie chroń swoje oczy.

Neodymowe magnesy mogą przyciągać się do siebie nawzajem, zaciskać skórę oraz sprawiać znaczne obrażenia.

Neodymowe magnesy będą podskakują oraz stykać razem o siebie w odległości od kilku do prawie 10 cm od siebie. W przypadku trzymania palca na drodze magnesu neodymowego, w takiej sytuacji może dojść do ścięcia lub nawet złamania.

Zachowaj ostrożność!

Aby zobrazować dlaczego magnesy neodymowe są aż tak niebezpieczne, zobacz artykuł - Jak niebezpieczne są bardzo mocne magnesy neodymowe?

logo Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98