Silne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Oferujemy bogatą gamę magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do zastosowań domowych, warsztatu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

sprawdź katalog magnesów

Magnet fishing: solidne zestawy F200/F400

Zacznij swoje hobby polegającą na poszukiwaniu skarbów pod wodą! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i potężnej siły. Solidna, antykorozyjna obudowa oraz mocne linki są niezawodne w rzekach i jeziorach.

wybierz swój magnes do wody

Uchwyty magnetyczne montażowe

Sprawdzone rozwiązania do montażu bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają szybkie usprawnienie pracy na halach produkcyjnych. Idealnie nadają się przy mocowaniu oświetlenia, sensorów oraz banerów.

zobacz zastosowania przemysłowe

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy w 24h!

Dhit sp. z o.o.
Produkt na zamówienie Wysyłamy za 3-5 dni

MW 29.9x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010052

GTIN/EAN: 5906301810513

Średnica Ø

29.9 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

52.66 g

Kierunek magnesowania

→ diametralny

Udźwig

21.50 kg / 210.90 N

Indukcja magnetyczna

344.60 mT / 3446 Gs

Powłoka

[NiCuNi] nikiel

24.60 z VAT / szt. + cena za transport

20.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
20.00 ZŁ
24.60 ZŁ
cena od 30 szt.
18.80 ZŁ
23.12 ZŁ
cena od 130 szt.
17.60 ZŁ
21.65 ZŁ
Chcesz lepszą cenę?

Zadzwoń do nas +48 888 99 98 98 albo daj znać korzystając z formularz kontaktowy na stronie kontaktowej.
Właściwości i formę magnesów zweryfikujesz dzięki naszemu narzędziu online do obliczeń.

Zamów do 14:00, a wyślemy dziś!

Właściwości fizyczne MW 29.9x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 29.9x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010052
GTIN/EAN 5906301810513
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 29.9 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 52.66 g
Kierunek magnesowania → diametralny
Udźwig ~ ? 21.50 kg / 210.90 N
Indukcja magnetyczna ~ ? 344.60 mT / 3446 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 29.9x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza fizyczna magnesu neodymowego - parametry techniczne

Niniejsze wartości stanowią wynik analizy matematycznej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 29.9x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3445 Gs
344.5 mT
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
miażdżący
1 mm 3261 Gs
326.1 mT
19.26 kg / 42.45 lbs
19256.6 g / 188.9 N
miażdżący
2 mm 3059 Gs
305.9 mT
16.95 kg / 37.36 lbs
16947.4 g / 166.3 N
miażdżący
3 mm 2848 Gs
284.8 mT
14.70 kg / 32.40 lbs
14696.2 g / 144.2 N
miażdżący
5 mm 2425 Gs
242.5 mT
10.65 kg / 23.48 lbs
10650.1 g / 104.5 N
miażdżący
10 mm 1519 Gs
151.9 mT
4.18 kg / 9.21 lbs
4178.4 g / 41.0 N
uwaga
15 mm 930 Gs
93.0 mT
1.57 kg / 3.45 lbs
1565.8 g / 15.4 N
bezpieczny
20 mm 583 Gs
58.3 mT
0.62 kg / 1.36 lbs
616.0 g / 6.0 N
bezpieczny
30 mm 258 Gs
25.8 mT
0.12 kg / 0.27 lbs
121.0 g / 1.2 N
bezpieczny
50 mm 76 Gs
7.6 mT
0.01 kg / 0.02 lbs
10.4 g / 0.1 N
bezpieczny

Tabela 2: Siła równoległa zsuwania (pion)
MW 29.9x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 4.30 kg / 9.48 lbs
4300.0 g / 42.2 N
1 mm Stal (~0.2) 3.85 kg / 8.49 lbs
3852.0 g / 37.8 N
2 mm Stal (~0.2) 3.39 kg / 7.47 lbs
3390.0 g / 33.3 N
3 mm Stal (~0.2) 2.94 kg / 6.48 lbs
2940.0 g / 28.8 N
5 mm Stal (~0.2) 2.13 kg / 4.70 lbs
2130.0 g / 20.9 N
10 mm Stal (~0.2) 0.84 kg / 1.84 lbs
836.0 g / 8.2 N
15 mm Stal (~0.2) 0.31 kg / 0.69 lbs
314.0 g / 3.1 N
20 mm Stal (~0.2) 0.12 kg / 0.27 lbs
124.0 g / 1.2 N
30 mm Stal (~0.2) 0.02 kg / 0.05 lbs
24.0 g / 0.2 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N

Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 29.9x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
6.45 kg / 14.22 lbs
6450.0 g / 63.3 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
4.30 kg / 9.48 lbs
4300.0 g / 42.2 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
2.15 kg / 4.74 lbs
2150.0 g / 21.1 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
10.75 kg / 23.70 lbs
10750.0 g / 105.5 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 29.9x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
1.08 kg / 2.37 lbs
1075.0 g / 10.5 N
1 mm
13%
2.69 kg / 5.92 lbs
2687.5 g / 26.4 N
2 mm
25%
5.38 kg / 11.85 lbs
5375.0 g / 52.7 N
3 mm
38%
8.06 kg / 17.77 lbs
8062.5 g / 79.1 N
5 mm
63%
13.44 kg / 29.62 lbs
13437.5 g / 131.8 N
10 mm
100%
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
11 mm
100%
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
12 mm
100%
21.50 kg / 47.40 lbs
21500.0 g / 210.9 N

Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 29.9x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 21.50 kg / 47.40 lbs
21500.0 g / 210.9 N
OK
40 °C -2.2% 21.03 kg / 46.36 lbs
21027.0 g / 206.3 N
OK
60 °C -4.4% 20.55 kg / 45.31 lbs
20554.0 g / 201.6 N
80 °C -6.6% 20.08 kg / 44.27 lbs
20081.0 g / 197.0 N
100 °C -28.8% 15.31 kg / 33.75 lbs
15308.0 g / 150.2 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 29.9x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 51.38 kg / 113.28 lbs
4 963 Gs
7.71 kg / 16.99 lbs
7708 g / 75.6 N
N/A
1 mm 48.76 kg / 107.50 lbs
6 712 Gs
7.31 kg / 16.12 lbs
7314 g / 71.7 N
43.88 kg / 96.75 lbs
~0 Gs
2 mm 46.02 kg / 101.46 lbs
6 521 Gs
6.90 kg / 15.22 lbs
6903 g / 67.7 N
41.42 kg / 91.32 lbs
~0 Gs
3 mm 43.26 kg / 95.37 lbs
6 322 Gs
6.49 kg / 14.31 lbs
6489 g / 63.7 N
38.93 kg / 85.83 lbs
~0 Gs
5 mm 37.78 kg / 83.30 lbs
5 909 Gs
5.67 kg / 12.49 lbs
5667 g / 55.6 N
34.00 kg / 74.97 lbs
~0 Gs
10 mm 25.45 kg / 56.11 lbs
4 850 Gs
3.82 kg / 8.42 lbs
3818 g / 37.5 N
22.91 kg / 50.50 lbs
~0 Gs
20 mm 9.99 kg / 22.02 lbs
3 038 Gs
1.50 kg / 3.30 lbs
1498 g / 14.7 N
8.99 kg / 19.81 lbs
~0 Gs
50 mm 0.63 kg / 1.38 lbs
761 Gs
0.09 kg / 0.21 lbs
94 g / 0.9 N
0.56 kg / 1.24 lbs
~0 Gs
60 mm 0.29 kg / 0.64 lbs
517 Gs
0.04 kg / 0.10 lbs
43 g / 0.4 N
0.26 kg / 0.57 lbs
~0 Gs
70 mm 0.14 kg / 0.32 lbs
364 Gs
0.02 kg / 0.05 lbs
22 g / 0.2 N
0.13 kg / 0.28 lbs
~0 Gs
80 mm 0.08 kg / 0.17 lbs
265 Gs
0.01 kg / 0.03 lbs
11 g / 0.1 N
0.07 kg / 0.15 lbs
~0 Gs
90 mm 0.04 kg / 0.09 lbs
198 Gs
0.01 kg / 0.01 lbs
6 g / 0.1 N
0.04 kg / 0.08 lbs
~0 Gs
100 mm 0.02 kg / 0.05 lbs
152 Gs
0.00 kg / 0.01 lbs
4 g / 0.0 N
0.02 kg / 0.05 lbs
~0 Gs

Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 29.9x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 13.5 cm
Implant słuchowy 10 Gs (1.0 mT) 11.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 8.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 6.5 cm
Immobilizer 50 Gs (5.0 mT) 6.0 cm
Karta płatnicza 400 Gs (40.0 mT) 2.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.0 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 29.9x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 22.72 km/h
(6.31 m/s)
1.05 J
30 mm 35.42 km/h
(9.84 m/s)
2.55 J
50 mm 45.58 km/h
(12.66 m/s)
4.22 J
100 mm 64.44 km/h
(17.90 m/s)
8.44 J

Tabela 9: Parametry powłoki (trwałość)
MW 29.9x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MW 29.9x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 25 588 Mx 255.9 µWb
Współczynnik Pc 0.44 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MW 29.9x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 21.50 kg Standard
Woda (dno rzeki) 24.62 kg
(+3.12 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Udźwig w pionie

*Uwaga: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły oderwania.

2. Wpływ grubości blachy

*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.

3. Wytrzymałość temperaturowa

*W klasie N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010052-2025
Przelicznik magnesów
Siła (udźwig)

Pole magnetyczne

Sprawdź inne propozycje

Prezentowany produkt to niezwykle mocny magnes walcowy, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø29.9x10 mm gwarantuje najwyższą gęstość energii. Komponent MW 29.9x10 / N38 cechuje się dokładnością ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o dużej sile (ok. 21.50 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia szybką realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni chroni go przed korozją w typowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy silników elektrycznych, zaawansowanych sensorów Halla oraz wydajnych separatorów magnetycznych, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki sile przyciągania 210.90 N przy wadze zaledwie 52.66 g, ten magnes cylindryczny jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ponieważ nasze magnesy mają tolerancję ±0,1mm, zalecanym sposobem jest wklejanie ich w otwory o średnicy minimalnie większej (np. 29.9,1 mm) przy użyciu klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się żywice anaerobowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując trwałość połączenia.
Magnesy NdFeB klasy N38 są wystarczająco silne do większości zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana skrajna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø29.9x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym sklepie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 29.9 mm i wysokość 10 mm. Wartość 210.90 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 52.66 g. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 29.9 mm. Taki układ jest najbardziej pożądany przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety i wady magnesów neodymowych Nd2Fe14B.

Korzyści

Magnesy neodymowe to nie tylko siła, ale także inne kluczowe cechy, w tym::
  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
  • Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
  • Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
  • Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
  • Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
  • Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
  • Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.

Słabe strony

Warto znać też słabe strony magnesów neodymowych:
  • Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
  • Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
  • Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
  • Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
  • Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.

Analiza siły trzymania

Siła oderwania magnesu w optymalnych warunkachod czego zależy?

Podany w tabeli udźwig jest rezultatem pomiaru wykonanego w następującej konfiguracji:
  • z zastosowaniem płyty ze stali o wysokiej przenikalności, pełniącej rolę idealny przewodnik strumienia
  • której grubość sięga przynajmniej 10 mm
  • o wypolerowanej powierzchni styku
  • przy całkowitym braku odstępu (brak farby)
  • podczas odrywania w kierunku pionowym do płaszczyzny mocowania
  • w warunkach ok. 20°C

Co wpływa na udźwig w praktyce

W rzeczywistych zastosowaniach, faktyczna siła trzymania zależy od wielu zmiennych, które przedstawiamy od najważniejszych:
  • Szczelina powietrzna (pomiędzy magnesem a metalem), gdyż nawet bardzo mała odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
  • Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
  • Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
  • Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
  • Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.

Udźwig wyznaczano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.

Zasady BHP dla użytkowników magnesów
Nie wierć w magnesach

Proszek generowany podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.

Implanty medyczne

Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.

Bezpieczna praca

Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i respektuj ich siły.

Ryzyko pęknięcia

Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.

Reakcje alergiczne

Niektóre osoby posiada alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może skutkować wysypkę. Zalecamy używanie rękawiczek ochronnych.

Nośniki danych

Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.

Produkt nie dla dzieci

Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.

Wpływ na smartfony

Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.

Utrata mocy w cieple

Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i siłę przyciągania.

Siła zgniatająca

Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa przyciągające się elementy.

Uwaga! Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98