MW 6x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010093
GTIN/EAN: 5906301810926
Średnica Ø
6 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
0.64 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.15 kg / 11.23 N
Indukcja magnetyczna
437.58 mT / 4376 Gs
Powłoka
[NiCuNi] nikiel
0.381 ZŁ z VAT / szt. + cena za transport
0.310 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość poprzez
formularz zgłoszeniowy
na naszej stronie.
Parametry i formę magnesu sprawdzisz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 6x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 6x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010093 |
| GTIN/EAN | 5906301810926 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 6 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 0.64 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.15 kg / 11.23 N |
| Indukcja magnetyczna ~ ? | 437.58 mT / 4376 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Niniejsze informacje stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
MW 6x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4371 Gs
437.1 mT
|
1.15 kg / 1150.0 g
11.3 N
|
niskie ryzyko |
| 1 mm |
2999 Gs
299.9 mT
|
0.54 kg / 541.6 g
5.3 N
|
niskie ryzyko |
| 2 mm |
1877 Gs
187.7 mT
|
0.21 kg / 212.2 g
2.1 N
|
niskie ryzyko |
| 3 mm |
1161 Gs
116.1 mT
|
0.08 kg / 81.2 g
0.8 N
|
niskie ryzyko |
| 5 mm |
489 Gs
48.9 mT
|
0.01 kg / 14.4 g
0.1 N
|
niskie ryzyko |
| 10 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.6 g
0.0 N
|
niskie ryzyko |
| 15 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 20 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MW 6x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.23 kg / 230.0 g
2.3 N
|
| 1 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 2 mm | Stal (~0.2) |
0.04 kg / 42.0 g
0.4 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 6x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.35 kg / 345.0 g
3.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.23 kg / 230.0 g
2.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.11 kg / 115.0 g
1.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.58 kg / 575.0 g
5.6 N
|
MW 6x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.11 kg / 115.0 g
1.1 N
|
| 1 mm |
|
0.29 kg / 287.5 g
2.8 N
|
| 2 mm |
|
0.58 kg / 575.0 g
5.6 N
|
| 5 mm |
|
1.15 kg / 1150.0 g
11.3 N
|
| 10 mm |
|
1.15 kg / 1150.0 g
11.3 N
|
MW 6x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.15 kg / 1150.0 g
11.3 N
|
OK |
| 40 °C | -2.2% |
1.12 kg / 1124.7 g
11.0 N
|
OK |
| 60 °C | -4.4% |
1.10 kg / 1099.4 g
10.8 N
|
|
| 80 °C | -6.6% |
1.07 kg / 1074.1 g
10.5 N
|
|
| 100 °C | -28.8% |
0.82 kg / 818.8 g
8.0 N
|
MW 6x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
3.33 kg / 3330 g
32.7 N
5 527 Gs
|
N/A |
| 1 mm |
2.37 kg / 2371 g
23.3 N
7 376 Gs
|
2.13 kg / 2134 g
20.9 N
~0 Gs
|
| 2 mm |
1.57 kg / 1568 g
15.4 N
5 999 Gs
|
1.41 kg / 1411 g
13.8 N
~0 Gs
|
| 3 mm |
0.99 kg / 992 g
9.7 N
4 772 Gs
|
0.89 kg / 893 g
8.8 N
~0 Gs
|
| 5 mm |
0.38 kg / 379 g
3.7 N
2 948 Gs
|
0.34 kg / 341 g
3.3 N
~0 Gs
|
| 10 mm |
0.04 kg / 42 g
0.4 N
978 Gs
|
0.04 kg / 37 g
0.4 N
~0 Gs
|
| 20 mm |
0.00 kg / 2 g
0.0 N
205 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
18 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 6x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 6x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
42.77 km/h
(11.88 m/s)
|
0.05 J | |
| 30 mm |
74.05 km/h
(20.57 m/s)
|
0.14 J | |
| 50 mm |
95.59 km/h
(26.55 m/s)
|
0.23 J | |
| 100 mm |
135.19 km/h
(37.55 m/s)
|
0.45 J |
MW 6x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 6x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 256 Mx | 12.6 µWb |
| Współczynnik Pc | 0.59 | Niski (Płaski) |
MW 6x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.15 kg | Standard |
| Woda (dno rzeki) |
1.32 kg
(+0.17 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.59
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- której grubość to min. 10 mm
- charakteryzującej się brakiem chropowatości
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Szczelina – obecność ciała obcego (farba, taśma, szczelina) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość stali – zbyt cienka płyta nie przyjmuje całego pola, przez co część mocy jest tracona na drugą stronę.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – gorące środowisko osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig określano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Wpływ na zdrowie
Pacjenci z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Nie przegrzewaj magnesów
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Unikaj kontaktu w przypadku alergii
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Uwaga na odpryski
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Pole magnetyczne a elektronika
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Zakaz obróbki
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie dla najmłodszych
Te produkty magnetyczne nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
