MW 10x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010009
GTIN: 5906301810087
Średnica Ø
10 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
17.67 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.92 kg / 18.79 N
Indukcja magnetyczna
610.80 mT / 6108 Gs
Powłoka
[NiCuNi] nikiel
8.61 ZŁ z VAT / szt. + cena za transport
7.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń i zapytaj
+48 888 99 98 98
ewentualnie napisz poprzez
formularz
na naszej stronie.
Moc oraz kształt magnesów neodymowych zobaczysz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 10x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010009 |
| GTIN | 5906301810087 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 17.67 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.92 kg / 18.79 N |
| Indukcja magnetyczna ~ ? | 610.80 mT / 6108 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Poniższe informacje są bezpośredni efekt symulacji fizycznej. Wyniki oparte są na algorytmach dla materiału NdFeB. Realne osiągi mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
MW 10x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6103 Gs
610.3 mT
|
1.92 kg / 1920.0 g
18.8 N
|
bezpieczny |
| 1 mm |
4905 Gs
490.5 mT
|
1.24 kg / 1240.1 g
12.2 N
|
bezpieczny |
| 2 mm |
3823 Gs
382.3 mT
|
0.75 kg / 753.3 g
7.4 N
|
bezpieczny |
| 3 mm |
2940 Gs
294.0 mT
|
0.45 kg / 445.6 g
4.4 N
|
bezpieczny |
| 5 mm |
1754 Gs
175.4 mT
|
0.16 kg / 158.5 g
1.6 N
|
bezpieczny |
| 10 mm |
607 Gs
60.7 mT
|
0.02 kg / 19.0 g
0.2 N
|
bezpieczny |
| 15 mm |
280 Gs
28.0 mT
|
0.00 kg / 4.0 g
0.0 N
|
bezpieczny |
| 20 mm |
154 Gs
15.4 mT
|
0.00 kg / 1.2 g
0.0 N
|
bezpieczny |
| 30 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 10x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 384.0 g
3.8 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 248.0 g
2.4 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 150.0 g
1.5 N
|
| 3 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.58 kg / 576.0 g
5.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 384.0 g
3.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 192.0 g
1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.96 kg / 960.0 g
9.4 N
|
MW 10x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 192.0 g
1.9 N
|
| 1 mm |
|
0.48 kg / 480.0 g
4.7 N
|
| 2 mm |
|
0.96 kg / 960.0 g
9.4 N
|
| 5 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
| 10 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
MW 10x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.92 kg / 1920.0 g
18.8 N
|
OK |
| 40 °C | -2.2% |
1.88 kg / 1877.8 g
18.4 N
|
OK |
| 60 °C | -4.4% |
1.84 kg / 1835.5 g
18.0 N
|
OK |
| 80 °C | -6.6% |
1.79 kg / 1793.3 g
17.6 N
|
|
| 100 °C | -28.8% |
1.37 kg / 1367.0 g
13.4 N
|
MW 10x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.93 kg / 1928 g
18.9 N
12 231 Gs
|
N/A |
| 1 mm |
1.24 kg / 1240 g
12.2 N
11 003 Gs
|
1.12 kg / 1116 g
10.9 N
~0 Gs
|
| 2 mm |
0.75 kg / 753 g
7.4 N
9 810 Gs
|
0.68 kg / 678 g
6.7 N
~0 Gs
|
| 3 mm |
0.45 kg / 446 g
4.4 N
8 684 Gs
|
0.40 kg / 401 g
3.9 N
~0 Gs
|
| 5 mm |
0.16 kg / 159 g
1.6 N
6 710 Gs
|
0.14 kg / 143 g
1.4 N
~0 Gs
|
| 10 mm |
0.02 kg / 19 g
0.2 N
3 507 Gs
|
0.02 kg / 17 g
0.2 N
~0 Gs
|
| 20 mm |
0.00 kg / 1 g
0.0 N
1 213 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
190 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 10x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
10.58 km/h
(2.94 m/s)
|
0.08 J | |
| 30 mm |
18.21 km/h
(5.06 m/s)
|
0.23 J | |
| 50 mm |
23.51 km/h
(6.53 m/s)
|
0.38 J | |
| 100 mm |
33.24 km/h
(9.23 m/s)
|
0.75 J |
MW 10x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 528 Mx | 55.3 µWb |
| Współczynnik Pc | 1.38 | Wysoki (Stabilny) |
MW 10x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.92 kg | Standard |
| Woda (dno rzeki) |
2.20 kg
(+0.28 kg Zysk z wyporności)
|
+14.5% |
Sprawdź inne produkty
Wady oraz zalety magnesów z neodymu NdFeB.
Należy pamiętać, iż obok ekstremalnej mocy, magnesy te wyróżniają się następującymi zaletami:
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki powłoce (NiCuNi, złoto, Ag) mają estetyczny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
Siła oderwania została wyznaczona dla optymalnej konfiguracji, uwzględniającej:
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
Podczas codziennego użytkowania, faktyczna siła trzymania zależy od szeregu czynników, wymienionych od najważniejszych:
- Dystans (między magnesem a metalem), bowiem nawet niewielka odległość (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka przyciąga najlepiej. Stale stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
* Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Zagrożenie dla nawigacji
Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Siła neodymu
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Urządzenia elektroniczne
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Ryzyko rozmagnesowania
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Ryzyko złamań
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ryzyko połknięcia
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Ważne!
Dowiedz się więcej o ryzyku w artykule: Niebezpieczne magnesy.
