MW 10x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010009
GTIN/EAN: 5906301810087
Średnica Ø
10 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
17.67 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.92 kg / 18.79 N
Indukcja magnetyczna
610.80 mT / 6108 Gs
Powłoka
[NiCuNi] nikiel
8.61 ZŁ z VAT / szt. + cena za transport
7.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Dzwoń do nas
+48 22 499 98 98
albo skontaktuj się poprzez
nasz formularz online
na stronie kontakt.
Właściwości i budowę magnesu przetestujesz w naszym
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 10x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010009 |
| GTIN/EAN | 5906301810087 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 17.67 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.92 kg / 18.79 N |
| Indukcja magnetyczna ~ ? | 610.80 mT / 6108 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią bezpośredni efekt kalkulacji fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
MW 10x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6103 Gs
610.3 mT
|
1.92 kg / 1920.0 g
18.8 N
|
słaby uchwyt |
| 1 mm |
4905 Gs
490.5 mT
|
1.24 kg / 1240.1 g
12.2 N
|
słaby uchwyt |
| 2 mm |
3823 Gs
382.3 mT
|
0.75 kg / 753.3 g
7.4 N
|
słaby uchwyt |
| 3 mm |
2940 Gs
294.0 mT
|
0.45 kg / 445.6 g
4.4 N
|
słaby uchwyt |
| 5 mm |
1754 Gs
175.4 mT
|
0.16 kg / 158.5 g
1.6 N
|
słaby uchwyt |
| 10 mm |
607 Gs
60.7 mT
|
0.02 kg / 19.0 g
0.2 N
|
słaby uchwyt |
| 15 mm |
280 Gs
28.0 mT
|
0.00 kg / 4.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
154 Gs
15.4 mT
|
0.00 kg / 1.2 g
0.0 N
|
słaby uchwyt |
| 30 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 10x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 384.0 g
3.8 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 248.0 g
2.4 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 150.0 g
1.5 N
|
| 3 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.58 kg / 576.0 g
5.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 384.0 g
3.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 192.0 g
1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.96 kg / 960.0 g
9.4 N
|
MW 10x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 192.0 g
1.9 N
|
| 1 mm |
|
0.48 kg / 480.0 g
4.7 N
|
| 2 mm |
|
0.96 kg / 960.0 g
9.4 N
|
| 5 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
| 10 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
MW 10x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.92 kg / 1920.0 g
18.8 N
|
OK |
| 40 °C | -2.2% |
1.88 kg / 1877.8 g
18.4 N
|
OK |
| 60 °C | -4.4% |
1.84 kg / 1835.5 g
18.0 N
|
OK |
| 80 °C | -6.6% |
1.79 kg / 1793.3 g
17.6 N
|
|
| 100 °C | -28.8% |
1.37 kg / 1367.0 g
13.4 N
|
MW 10x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
18.04 kg / 18037 g
176.9 N
6 166 Gs
|
N/A |
| 1 mm |
14.65 kg / 14655 g
143.8 N
11 003 Gs
|
13.19 kg / 13189 g
129.4 N
~0 Gs
|
| 2 mm |
11.65 kg / 11649 g
114.3 N
9 810 Gs
|
10.48 kg / 10484 g
102.9 N
~0 Gs
|
| 3 mm |
9.13 kg / 9128 g
89.5 N
8 684 Gs
|
8.21 kg / 8215 g
80.6 N
~0 Gs
|
| 5 mm |
5.45 kg / 5451 g
53.5 N
6 710 Gs
|
4.91 kg / 4906 g
48.1 N
~0 Gs
|
| 10 mm |
1.49 kg / 1489 g
14.6 N
3 507 Gs
|
1.34 kg / 1340 g
13.1 N
~0 Gs
|
| 20 mm |
0.18 kg / 178 g
1.7 N
1 213 Gs
|
0.16 kg / 160 g
1.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 4 g
0.0 N
190 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 10x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
10.58 km/h
(2.94 m/s)
|
0.08 J | |
| 30 mm |
18.21 km/h
(5.06 m/s)
|
0.23 J | |
| 50 mm |
23.51 km/h
(6.53 m/s)
|
0.38 J | |
| 100 mm |
33.24 km/h
(9.23 m/s)
|
0.75 J |
MW 10x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 528 Mx | 55.3 µWb |
| Współczynnik Pc | 1.38 | Wysoki (Stabilny) |
MW 10x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.92 kg | Standard |
| Woda (dno rzeki) |
2.20 kg
(+0.28 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa tylko ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, złoto, srebro) mają nowoczesny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy zastosowaniu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się gładkością
- przy całkowitym braku odstępu (brak powłok)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w neutralnych warunkach termicznych
Co wpływa na udźwig w praktyce
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka stal nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą obniża nośność.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Dla uczulonych
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Trzymaj z dala od elektroniki
Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Nie zbliżaj do komputera
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Uwaga medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Urazy ciała
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
Kruchość materiału
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Samozapłon
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
