MW 10x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010009
GTIN/EAN: 5906301810087
Średnica Ø
10 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
17.67 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.92 kg / 18.79 N
Indukcja magnetyczna
610.80 mT / 6108 Gs
Powłoka
[NiCuNi] nikiel
8.61 ZŁ z VAT / szt. + cena za transport
7.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub pisz przez
formularz zapytania
na stronie kontakt.
Masę i wygląd elementów magnetycznych zobaczysz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - MW 10x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010009 |
| GTIN/EAN | 5906301810087 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 17.67 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.92 kg / 18.79 N |
| Indukcja magnetyczna ~ ? | 610.80 mT / 6108 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Przedstawione wartości są rezultat symulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 10x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6103 Gs
610.3 mT
|
1.92 kg / 1920.0 g
18.8 N
|
niskie ryzyko |
| 1 mm |
4905 Gs
490.5 mT
|
1.24 kg / 1240.1 g
12.2 N
|
niskie ryzyko |
| 2 mm |
3823 Gs
382.3 mT
|
0.75 kg / 753.3 g
7.4 N
|
niskie ryzyko |
| 3 mm |
2940 Gs
294.0 mT
|
0.45 kg / 445.6 g
4.4 N
|
niskie ryzyko |
| 5 mm |
1754 Gs
175.4 mT
|
0.16 kg / 158.5 g
1.6 N
|
niskie ryzyko |
| 10 mm |
607 Gs
60.7 mT
|
0.02 kg / 19.0 g
0.2 N
|
niskie ryzyko |
| 15 mm |
280 Gs
28.0 mT
|
0.00 kg / 4.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
154 Gs
15.4 mT
|
0.00 kg / 1.2 g
0.0 N
|
niskie ryzyko |
| 30 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MW 10x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 384.0 g
3.8 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 248.0 g
2.4 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 150.0 g
1.5 N
|
| 3 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 10x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.58 kg / 576.0 g
5.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 384.0 g
3.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 192.0 g
1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.96 kg / 960.0 g
9.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 10x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 192.0 g
1.9 N
|
| 1 mm |
|
0.48 kg / 480.0 g
4.7 N
|
| 2 mm |
|
0.96 kg / 960.0 g
9.4 N
|
| 5 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
| 10 mm |
|
1.92 kg / 1920.0 g
18.8 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 10x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.92 kg / 1920.0 g
18.8 N
|
OK |
| 40 °C | -2.2% |
1.88 kg / 1877.8 g
18.4 N
|
OK |
| 60 °C | -4.4% |
1.84 kg / 1835.5 g
18.0 N
|
OK |
| 80 °C | -6.6% |
1.79 kg / 1793.3 g
17.6 N
|
|
| 100 °C | -28.8% |
1.37 kg / 1367.0 g
13.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 10x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
18.04 kg / 18037 g
176.9 N
6 166 Gs
|
N/A |
| 1 mm |
14.65 kg / 14655 g
143.8 N
11 003 Gs
|
13.19 kg / 13189 g
129.4 N
~0 Gs
|
| 2 mm |
11.65 kg / 11649 g
114.3 N
9 810 Gs
|
10.48 kg / 10484 g
102.9 N
~0 Gs
|
| 3 mm |
9.13 kg / 9128 g
89.5 N
8 684 Gs
|
8.21 kg / 8215 g
80.6 N
~0 Gs
|
| 5 mm |
5.45 kg / 5451 g
53.5 N
6 710 Gs
|
4.91 kg / 4906 g
48.1 N
~0 Gs
|
| 10 mm |
1.49 kg / 1489 g
14.6 N
3 507 Gs
|
1.34 kg / 1340 g
13.1 N
~0 Gs
|
| 20 mm |
0.18 kg / 178 g
1.7 N
1 213 Gs
|
0.16 kg / 160 g
1.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 4 g
0.0 N
190 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 10x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 10x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
10.58 km/h
(2.94 m/s)
|
0.08 J | |
| 30 mm |
18.21 km/h
(5.06 m/s)
|
0.23 J | |
| 50 mm |
23.51 km/h
(6.53 m/s)
|
0.38 J | |
| 100 mm |
33.24 km/h
(9.23 m/s)
|
0.75 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 10x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 10x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 528 Mx | 55.3 µWb |
| Współczynnik Pc | 1.38 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 10x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.92 kg | Standard |
| Woda (dno rzeki) |
2.20 kg
(+0.28 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.38
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (nikiel, Au, Ag) mają estetyczny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- z zastosowaniem blachy ze stali niskowęglowej, działającej jako zwora magnetyczna
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Wpływ czynników na nośność magnesu w praktyce
- Dystans – obecność ciała obcego (farba, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość stali – zbyt cienka stal nie przyjmuje całego pola, przez co część strumienia marnuje się na drugą stronę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Wpływ na smartfony
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Poważne obrażenia
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Karty i dyski
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
To nie jest zabawka
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Rozruszniki serca
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Nadwrażliwość na metale
Niektóre osoby wykazuje alergię kontaktową na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może skutkować wysypkę. Zalecamy używanie rękawic bezlateksowych.
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Ochrona oczu
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Bezpieczna praca
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
