MW 5x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010086
GTIN/EAN: 5906301810858
Średnica Ø
5 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
3.68 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.45 kg / 4.41 N
Indukcja magnetyczna
615.39 mT / 6154 Gs
Powłoka
[NiCuNi] nikiel
2.31 ZŁ z VAT / szt. + cena za transport
1.880 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
formularz zgłoszeniowy
w sekcji kontakt.
Moc oraz wygląd magnesów zobaczysz dzięki naszemu
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane - MW 5x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010086 |
| GTIN/EAN | 5906301810858 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 3.68 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.45 kg / 4.41 N |
| Indukcja magnetyczna ~ ? | 615.39 mT / 6154 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Niniejsze dane są bezpośredni efekt analizy inżynierskiej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 5x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6144 Gs
614.4 mT
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
słaby uchwyt |
| 1 mm |
3869 Gs
386.9 mT
|
0.18 kg / 0.39 lbs
178.4 g / 1.8 N
|
słaby uchwyt |
| 2 mm |
2300 Gs
230.0 mT
|
0.06 kg / 0.14 lbs
63.1 g / 0.6 N
|
słaby uchwyt |
| 3 mm |
1412 Gs
141.2 mT
|
0.02 kg / 0.05 lbs
23.8 g / 0.2 N
|
słaby uchwyt |
| 5 mm |
633 Gs
63.3 mT
|
0.00 kg / 0.01 lbs
4.8 g / 0.0 N
|
słaby uchwyt |
| 10 mm |
169 Gs
16.9 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
72 Gs
7.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 5x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 5x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 0.30 lbs
135.0 g / 1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 0.10 lbs
45.0 g / 0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 0.50 lbs
225.0 g / 2.2 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 5x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 0.10 lbs
45.0 g / 0.4 N
|
| 1 mm |
|
0.11 kg / 0.25 lbs
112.5 g / 1.1 N
|
| 2 mm |
|
0.23 kg / 0.50 lbs
225.0 g / 2.2 N
|
| 3 mm |
|
0.34 kg / 0.74 lbs
337.5 g / 3.3 N
|
| 5 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 10 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 11 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 12 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - próg odporności
MW 5x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 0.97 lbs
440.1 g / 4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 0.95 lbs
430.2 g / 4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 0.93 lbs
420.3 g / 4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 0.71 lbs
320.4 g / 3.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 5x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.57 kg / 10.08 lbs
6 167 Gs
|
0.69 kg / 1.51 lbs
686 g / 6.7 N
|
N/A |
| 1 mm |
2.97 kg / 6.55 lbs
9 909 Gs
|
0.45 kg / 0.98 lbs
446 g / 4.4 N
|
2.67 kg / 5.90 lbs
~0 Gs
|
| 2 mm |
1.81 kg / 3.99 lbs
7 738 Gs
|
0.27 kg / 0.60 lbs
272 g / 2.7 N
|
1.63 kg / 3.60 lbs
~0 Gs
|
| 3 mm |
1.08 kg / 2.37 lbs
5 965 Gs
|
0.16 kg / 0.36 lbs
162 g / 1.6 N
|
0.97 kg / 2.14 lbs
~0 Gs
|
| 5 mm |
0.39 kg / 0.86 lbs
3 581 Gs
|
0.06 kg / 0.13 lbs
58 g / 0.6 N
|
0.35 kg / 0.77 lbs
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 lbs
1 266 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
339 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 5x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 5x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.16 km/h
(3.10 m/s)
|
0.02 J | |
| 30 mm |
19.32 km/h
(5.37 m/s)
|
0.05 J | |
| 50 mm |
24.94 km/h
(6.93 m/s)
|
0.09 J | |
| 100 mm |
35.27 km/h
(9.80 m/s)
|
0.18 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 5x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 5x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 450 Mx | 14.5 µWb |
| Współczynnik Pc | 1.55 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 5x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.45 kg | Standard |
| Woda (dno rzeki) |
0.52 kg
(+0.07 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po 10 lat spadek siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować osłony lub montaż w stali.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- o grubości przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Praktyczny udźwig: czynniki wpływające
- Dystans (pomiędzy magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Udźwig określano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Bezpieczna praca przy magnesach z neodymem
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Trzymaj z dala od elektroniki
Silne pole magnetyczne zakłóca funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Wrażliwość na ciepło
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Uwaga: zadławienie
Te produkty magnetyczne nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Ostrzeżenie dla alergików
Niektóre osoby wykazuje nadwrażliwość na nikiel, którym zabezpieczane są nasze produkty. Częste dotykanie może skutkować wysypkę. Zalecamy używanie rękawiczek ochronnych.
Samozapłon
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Interferencja medyczna
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Bezpieczna praca
Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
