MW 5x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010086
GTIN/EAN: 5906301810858
Średnica Ø
5 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
3.68 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.45 kg / 4.41 N
Indukcja magnetyczna
615.39 mT / 6154 Gs
Powłoka
[NiCuNi] nikiel
2.31 ZŁ z VAT / szt. + cena za transport
1.880 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo pisz poprzez
nasz formularz online
na stronie kontakt.
Właściwości i formę magnesów neodymowych zweryfikujesz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Parametry - MW 5x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010086 |
| GTIN/EAN | 5906301810858 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 3.68 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.45 kg / 4.41 N |
| Indukcja magnetyczna ~ ? | 615.39 mT / 6154 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Niniejsze informacje są bezpośredni efekt symulacji matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 5x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6144 Gs
614.4 mT
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
słaby uchwyt |
| 1 mm |
3869 Gs
386.9 mT
|
0.18 kg / 0.39 lbs
178.4 g / 1.8 N
|
słaby uchwyt |
| 2 mm |
2300 Gs
230.0 mT
|
0.06 kg / 0.14 lbs
63.1 g / 0.6 N
|
słaby uchwyt |
| 3 mm |
1412 Gs
141.2 mT
|
0.02 kg / 0.05 lbs
23.8 g / 0.2 N
|
słaby uchwyt |
| 5 mm |
633 Gs
63.3 mT
|
0.00 kg / 0.01 lbs
4.8 g / 0.0 N
|
słaby uchwyt |
| 10 mm |
169 Gs
16.9 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
72 Gs
7.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 5x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 5x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 0.30 lbs
135.0 g / 1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 0.10 lbs
45.0 g / 0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 0.50 lbs
225.0 g / 2.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 5x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 0.10 lbs
45.0 g / 0.4 N
|
| 1 mm |
|
0.11 kg / 0.25 lbs
112.5 g / 1.1 N
|
| 2 mm |
|
0.23 kg / 0.50 lbs
225.0 g / 2.2 N
|
| 3 mm |
|
0.34 kg / 0.74 lbs
337.5 g / 3.3 N
|
| 5 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 10 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 11 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 12 mm |
|
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 5x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 0.97 lbs
440.1 g / 4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 0.95 lbs
430.2 g / 4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 0.93 lbs
420.3 g / 4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 0.71 lbs
320.4 g / 3.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 5x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.57 kg / 10.08 lbs
6 167 Gs
|
0.69 kg / 1.51 lbs
686 g / 6.7 N
|
N/A |
| 1 mm |
2.97 kg / 6.55 lbs
9 909 Gs
|
0.45 kg / 0.98 lbs
446 g / 4.4 N
|
2.67 kg / 5.90 lbs
~0 Gs
|
| 2 mm |
1.81 kg / 3.99 lbs
7 738 Gs
|
0.27 kg / 0.60 lbs
272 g / 2.7 N
|
1.63 kg / 3.60 lbs
~0 Gs
|
| 3 mm |
1.08 kg / 2.37 lbs
5 965 Gs
|
0.16 kg / 0.36 lbs
162 g / 1.6 N
|
0.97 kg / 2.14 lbs
~0 Gs
|
| 5 mm |
0.39 kg / 0.86 lbs
3 581 Gs
|
0.06 kg / 0.13 lbs
58 g / 0.6 N
|
0.35 kg / 0.77 lbs
~0 Gs
|
| 10 mm |
0.05 kg / 0.11 lbs
1 266 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
339 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 5x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 5x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.16 km/h
(3.10 m/s)
|
0.02 J | |
| 30 mm |
19.32 km/h
(5.37 m/s)
|
0.05 J | |
| 50 mm |
24.94 km/h
(6.93 m/s)
|
0.09 J | |
| 100 mm |
35.27 km/h
(9.80 m/s)
|
0.18 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 5x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 5x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 450 Mx | 14.5 µWb |
| Współczynnik Pc | 1.55 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 5x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.45 kg | Standard |
| Woda (dno rzeki) |
0.52 kg
(+0.07 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują nowoczesny, metaliczny wygląd.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje nośność.
Bezpieczna praca z magnesami neodymowymi
Samozapłon
Proszek generowany podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, zegarki mechaniczne).
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Uwaga: zadławienie
Silne magnesy to nie zabawki. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Ryzyko uczulenia
Niektóre osoby wykazuje alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Sugerujemy stosowanie rękawiczek ochronnych.
