MW 5x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010086
GTIN/EAN: 5906301810858
Średnica Ø
5 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
3.68 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.45 kg / 4.41 N
Indukcja magnetyczna
615.39 mT / 6154 Gs
Powłoka
[NiCuNi] nikiel
2.31 ZŁ z VAT / szt. + cena za transport
1.880 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo skontaktuj się korzystając z
nasz formularz online
na stronie kontakt.
Udźwig i kształt magnesów wyliczysz dzięki naszemu
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 5x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010086 |
| GTIN/EAN | 5906301810858 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 3.68 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.45 kg / 4.41 N |
| Indukcja magnetyczna ~ ? | 615.39 mT / 6154 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Przedstawione informacje stanowią wynik symulacji matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 5x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6144 Gs
614.4 mT
|
0.45 kg / 450.0 g
4.4 N
|
słaby uchwyt |
| 1 mm |
3869 Gs
386.9 mT
|
0.18 kg / 178.4 g
1.8 N
|
słaby uchwyt |
| 2 mm |
2300 Gs
230.0 mT
|
0.06 kg / 63.1 g
0.6 N
|
słaby uchwyt |
| 3 mm |
1412 Gs
141.2 mT
|
0.02 kg / 23.8 g
0.2 N
|
słaby uchwyt |
| 5 mm |
633 Gs
63.3 mT
|
0.00 kg / 4.8 g
0.0 N
|
słaby uchwyt |
| 10 mm |
169 Gs
16.9 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 15 mm |
72 Gs
7.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 20 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 5x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 90.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 5x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 135.0 g
1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 90.0 g
0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 45.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 225.0 g
2.2 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 5x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 45.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 112.5 g
1.1 N
|
| 2 mm |
|
0.23 kg / 225.0 g
2.2 N
|
| 5 mm |
|
0.45 kg / 450.0 g
4.4 N
|
| 10 mm |
|
0.45 kg / 450.0 g
4.4 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 5x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.45 kg / 450.0 g
4.4 N
|
OK |
| 40 °C | -2.2% |
0.44 kg / 440.1 g
4.3 N
|
OK |
| 60 °C | -4.4% |
0.43 kg / 430.2 g
4.2 N
|
OK |
| 80 °C | -6.6% |
0.42 kg / 420.3 g
4.1 N
|
|
| 100 °C | -28.8% |
0.32 kg / 320.4 g
3.1 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 5x25 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.57 kg / 4570 g
44.8 N
6 167 Gs
|
N/A |
| 1 mm |
2.97 kg / 2971 g
29.1 N
9 909 Gs
|
2.67 kg / 2674 g
26.2 N
~0 Gs
|
| 2 mm |
1.81 kg / 1812 g
17.8 N
7 738 Gs
|
1.63 kg / 1631 g
16.0 N
~0 Gs
|
| 3 mm |
1.08 kg / 1077 g
10.6 N
5 965 Gs
|
0.97 kg / 969 g
9.5 N
~0 Gs
|
| 5 mm |
0.39 kg / 388 g
3.8 N
3 581 Gs
|
0.35 kg / 349 g
3.4 N
~0 Gs
|
| 10 mm |
0.05 kg / 49 g
0.5 N
1 266 Gs
|
0.04 kg / 44 g
0.4 N
~0 Gs
|
| 20 mm |
0.00 kg / 3 g
0.0 N
339 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
46 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 5x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 5x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.16 km/h
(3.10 m/s)
|
0.02 J | |
| 30 mm |
19.32 km/h
(5.37 m/s)
|
0.05 J | |
| 50 mm |
24.94 km/h
(6.93 m/s)
|
0.09 J | |
| 100 mm |
35.27 km/h
(9.80 m/s)
|
0.18 J |
Tabela 9: Parametry powłoki (trwałość)
MW 5x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 5x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 450 Mx | 14.5 µWb |
| Współczynnik Pc | 1.55 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 5x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.45 kg | Standard |
| Woda (dno rzeki) |
0.52 kg
(+0.07 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z użyciem podłoża ze stali o wysokiej przenikalności, działającej jako zwora magnetyczna
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się równą strukturą
- w warunkach idealnego przylegania (metal do metalu)
- przy osiowym kierunku działania siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Udźwig w praktyce – czynniki wpływu
- Szczelina powietrzna (pomiędzy magnesem a blachą), bowiem nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek działania siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig określano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Ogromna siła
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
Ryzyko złamań
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ryzyko pęknięcia
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Obróbka mechaniczna
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Implanty medyczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Unikaj kontaktu w przypadku alergii
Niektóre osoby ma alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może skutkować wysypkę. Sugerujemy noszenie rękawic bezlateksowych.
Maksymalna temperatura
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Elektronika precyzyjna
Silne pole magnetyczne zakłóca funkcjonowanie kompasów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
