MW 5x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010083
GTIN: 5906301810827
Średnica Ø
5 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
1.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.56 kg / 5.45 N
Indukcja magnetyczna
599.97 mT / 6000 Gs
Powłoka
[NiCuNi] nikiel
0.800 ZŁ z VAT / szt. + cena za transport
0.650 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie daj znać przez
nasz formularz online
na stronie kontakt.
Parametry i budowę elementów magnetycznych skontrolujesz dzięki naszemu
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 5x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 5x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010083 |
| GTIN | 5906301810827 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 1.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.56 kg / 5.45 N |
| Indukcja magnetyczna ~ ? | 599.97 mT / 6000 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu neodymowego - parametry techniczne
Przedstawione informacje stanowią wynik kalkulacji matematycznej. Wyniki bazują na modelach dla klasy NdFeB. Rzeczywiste warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
MW 5x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5990 Gs
599.0 mT
|
0.56 kg / 560.0 g
5.5 N
|
bezpieczny |
| 1 mm |
3743 Gs
374.3 mT
|
0.22 kg / 218.7 g
2.1 N
|
bezpieczny |
| 2 mm |
2197 Gs
219.7 mT
|
0.08 kg / 75.3 g
0.7 N
|
bezpieczny |
| 3 mm |
1325 Gs
132.5 mT
|
0.03 kg / 27.4 g
0.3 N
|
bezpieczny |
| 5 mm |
570 Gs
57.0 mT
|
0.01 kg / 5.1 g
0.0 N
|
bezpieczny |
| 10 mm |
137 Gs
13.7 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 15 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 5x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.11 kg / 112.0 g
1.1 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 5x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.17 kg / 168.0 g
1.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.11 kg / 112.0 g
1.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.06 kg / 56.0 g
0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.28 kg / 280.0 g
2.7 N
|
MW 5x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.06 kg / 56.0 g
0.5 N
|
| 1 mm |
|
0.14 kg / 140.0 g
1.4 N
|
| 2 mm |
|
0.28 kg / 280.0 g
2.7 N
|
| 5 mm |
|
0.56 kg / 560.0 g
5.5 N
|
| 10 mm |
|
0.56 kg / 560.0 g
5.5 N
|
MW 5x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.56 kg / 560.0 g
5.5 N
|
OK |
| 40 °C | -2.2% |
0.55 kg / 547.7 g
5.4 N
|
OK |
| 60 °C | -4.4% |
0.54 kg / 535.4 g
5.3 N
|
OK |
| 80 °C | -6.6% |
0.52 kg / 523.0 g
5.1 N
|
|
| 100 °C | -28.8% |
0.40 kg / 398.7 g
3.9 N
|
MW 5x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.56 kg / 565 g
5.5 N
12 030 Gs
|
N/A |
| 1 mm |
0.22 kg / 219 g
2.1 N
9 631 Gs
|
0.20 kg / 197 g
1.9 N
~0 Gs
|
| 2 mm |
0.08 kg / 75 g
0.7 N
7 486 Gs
|
0.07 kg / 68 g
0.7 N
~0 Gs
|
| 3 mm |
0.03 kg / 27 g
0.3 N
5 737 Gs
|
0.02 kg / 25 g
0.2 N
~0 Gs
|
| 5 mm |
0.01 kg / 5 g
0.0 N
3 391 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 10 mm |
0.00 kg / 0 g
0.0 N
1 140 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
274 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
30 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 5x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 5x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.69 km/h
(5.47 m/s)
|
0.02 J | |
| 30 mm |
34.09 km/h
(9.47 m/s)
|
0.07 J | |
| 50 mm |
44.02 km/h
(12.23 m/s)
|
0.11 J | |
| 100 mm |
62.25 km/h
(17.29 m/s)
|
0.22 J |
MW 5x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 5x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 306 Mx | 13.1 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
MW 5x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.56 kg | Standard |
| Woda (dno rzeki) |
0.64 kg
(+0.08 kg Zysk z wyporności)
|
+14.5% |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu NdFeB.
Neodymy to nie tylko moc przyciągania, ale także inne kluczowe cechy, takie jak::
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (NiCuNi, Au, Ag) zyskują nowoczesny, błyszczący wygląd.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Warto znać też słabe strony magnesów neodymowych:
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Optymalny udźwig magnesu neodymowego – co się na to składa?
Informacja o udźwigu to rezultat pomiaru dla optymalnej konfiguracji, uwzględniającej:
- przy zastosowaniu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o idealnie gładkiej powierzchni styku
- w warunkach braku dystansu (metal do metalu)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w neutralnych warunkach termicznych
Udźwig w praktyce – czynniki wpływu
W praktyce, rzeczywisty udźwig jest determinowana przez wielu zmiennych, wymienionych od najbardziej istotnych:
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
* Udźwig wyznaczano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje nośność.
BHP przy magnesach
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Nie wierć w magnesach
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Dla uczulonych
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zagrożenie dla najmłodszych
Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Kruchość materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Interferencja medyczna
Pacjenci z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Interferencja magnetyczna
Silne pole magnetyczne zakłóca funkcjonowanie czujników w telefonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Ostrzeżenie!
Szczegółowe omówienie o zagrożeniach w artykule: Niebezpieczne magnesy.
