MW 5x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010083
GTIN/EAN: 5906301810827
Średnica Ø
5 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
1.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.56 kg / 5.45 N
Indukcja magnetyczna
599.97 mT / 6000 Gs
Powłoka
[NiCuNi] nikiel
0.800 ZŁ z VAT / szt. + cena za transport
0.650 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie napisz korzystając z
formularz
na stronie kontakt.
Właściwości i kształt magnesu przetestujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MW 5x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010083 |
| GTIN/EAN | 5906301810827 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 1.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.56 kg / 5.45 N |
| Indukcja magnetyczna ~ ? | 599.97 mT / 6000 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Przedstawione wartości stanowią rezultat symulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 5x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5990 Gs
599.0 mT
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
słaby uchwyt |
| 1 mm |
3743 Gs
374.3 mT
|
0.22 kg / 0.48 lbs
218.7 g / 2.1 N
|
słaby uchwyt |
| 2 mm |
2197 Gs
219.7 mT
|
0.08 kg / 0.17 lbs
75.3 g / 0.7 N
|
słaby uchwyt |
| 3 mm |
1325 Gs
132.5 mT
|
0.03 kg / 0.06 lbs
27.4 g / 0.3 N
|
słaby uchwyt |
| 5 mm |
570 Gs
57.0 mT
|
0.01 kg / 0.01 lbs
5.1 g / 0.0 N
|
słaby uchwyt |
| 10 mm |
137 Gs
13.7 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 5x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 5x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.17 kg / 0.37 lbs
168.0 g / 1.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.11 kg / 0.25 lbs
112.0 g / 1.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 5x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
| 1 mm |
|
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 2 mm |
|
0.28 kg / 0.62 lbs
280.0 g / 2.7 N
|
| 3 mm |
|
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 5 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 10 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 11 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
| 12 mm |
|
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 5x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.56 kg / 1.23 lbs
560.0 g / 5.5 N
|
OK |
| 40 °C | -2.2% |
0.55 kg / 1.21 lbs
547.7 g / 5.4 N
|
OK |
| 60 °C | -4.4% |
0.54 kg / 1.18 lbs
535.4 g / 5.3 N
|
OK |
| 80 °C | -6.6% |
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
|
|
| 100 °C | -28.8% |
0.40 kg / 0.88 lbs
398.7 g / 3.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 5x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.34 kg / 9.58 lbs
6 127 Gs
|
0.65 kg / 1.44 lbs
652 g / 6.4 N
|
N/A |
| 1 mm |
2.81 kg / 6.19 lbs
9 631 Gs
|
0.42 kg / 0.93 lbs
421 g / 4.1 N
|
2.53 kg / 5.57 lbs
~0 Gs
|
| 2 mm |
1.70 kg / 3.74 lbs
7 486 Gs
|
0.25 kg / 0.56 lbs
254 g / 2.5 N
|
1.53 kg / 3.37 lbs
~0 Gs
|
| 3 mm |
1.00 kg / 2.20 lbs
5 737 Gs
|
0.15 kg / 0.33 lbs
149 g / 1.5 N
|
0.90 kg / 1.98 lbs
~0 Gs
|
| 5 mm |
0.35 kg / 0.77 lbs
3 391 Gs
|
0.05 kg / 0.12 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 10 mm |
0.04 kg / 0.09 lbs
1 140 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.01 lbs
274 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
5 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 5x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 5x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.69 km/h
(5.47 m/s)
|
0.02 J | |
| 30 mm |
34.09 km/h
(9.47 m/s)
|
0.07 J | |
| 50 mm |
44.02 km/h
(12.23 m/s)
|
0.11 J | |
| 100 mm |
62.25 km/h
(17.29 m/s)
|
0.22 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 5x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 5x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 306 Mx | 13.1 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 5x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.56 kg | Standard |
| Woda (dno rzeki) |
0.64 kg
(+0.08 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.21
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Szczelina – występowanie ciała obcego (farba, taśma, powietrze) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Masywność podłoża – za chuda płyta nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano z wykorzystaniem blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
BHP przy magnesach
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Nie dawać dzieciom
Magnesy neodymowe nie służą do zabawy. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Nośniki danych
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Ochrona dłoni
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zasady obsługi
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Ryzyko pęknięcia
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Zagrożenie dla nawigacji
Ważna informacja: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Ostrzeżenie dla alergików
Część populacji ma alergię kontaktową na nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Wskazane jest używanie rękawiczek ochronnych.
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
