MW 5x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010083
GTIN/EAN: 5906301810827
Średnica Ø
5 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
1.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.56 kg / 5.45 N
Indukcja magnetyczna
599.97 mT / 6000 Gs
Powłoka
[NiCuNi] nikiel
0.800 ZŁ z VAT / szt. + cena za transport
0.650 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo daj znać przez
formularz zapytania
na stronie kontaktowej.
Masę oraz formę magnesu obliczysz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja - MW 5x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 5x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010083 |
| GTIN/EAN | 5906301810827 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 5 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 1.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.56 kg / 5.45 N |
| Indukcja magnetyczna ~ ? | 599.97 mT / 6000 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Poniższe informacje są bezpośredni efekt kalkulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 5x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5990 Gs
599.0 mT
|
0.56 kg / 560.0 g
5.5 N
|
bezpieczny |
| 1 mm |
3743 Gs
374.3 mT
|
0.22 kg / 218.7 g
2.1 N
|
bezpieczny |
| 2 mm |
2197 Gs
219.7 mT
|
0.08 kg / 75.3 g
0.7 N
|
bezpieczny |
| 3 mm |
1325 Gs
132.5 mT
|
0.03 kg / 27.4 g
0.3 N
|
bezpieczny |
| 5 mm |
570 Gs
57.0 mT
|
0.01 kg / 5.1 g
0.0 N
|
bezpieczny |
| 10 mm |
137 Gs
13.7 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 15 mm |
54 Gs
5.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 5x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.11 kg / 112.0 g
1.1 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 2 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 3 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 5x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.17 kg / 168.0 g
1.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.11 kg / 112.0 g
1.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.06 kg / 56.0 g
0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.28 kg / 280.0 g
2.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 5x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.06 kg / 56.0 g
0.5 N
|
| 1 mm |
|
0.14 kg / 140.0 g
1.4 N
|
| 2 mm |
|
0.28 kg / 280.0 g
2.7 N
|
| 5 mm |
|
0.56 kg / 560.0 g
5.5 N
|
| 10 mm |
|
0.56 kg / 560.0 g
5.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 5x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.56 kg / 560.0 g
5.5 N
|
OK |
| 40 °C | -2.2% |
0.55 kg / 547.7 g
5.4 N
|
OK |
| 60 °C | -4.4% |
0.54 kg / 535.4 g
5.3 N
|
OK |
| 80 °C | -6.6% |
0.52 kg / 523.0 g
5.1 N
|
|
| 100 °C | -28.8% |
0.40 kg / 398.7 g
3.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 5x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.34 kg / 4344 g
42.6 N
6 127 Gs
|
N/A |
| 1 mm |
2.81 kg / 2807 g
27.5 N
9 631 Gs
|
2.53 kg / 2526 g
24.8 N
~0 Gs
|
| 2 mm |
1.70 kg / 1696 g
16.6 N
7 486 Gs
|
1.53 kg / 1526 g
15.0 N
~0 Gs
|
| 3 mm |
1.00 kg / 996 g
9.8 N
5 737 Gs
|
0.90 kg / 897 g
8.8 N
~0 Gs
|
| 5 mm |
0.35 kg / 348 g
3.4 N
3 391 Gs
|
0.31 kg / 313 g
3.1 N
~0 Gs
|
| 10 mm |
0.04 kg / 39 g
0.4 N
1 140 Gs
|
0.04 kg / 35 g
0.3 N
~0 Gs
|
| 20 mm |
0.00 kg / 2 g
0.0 N
274 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
30 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 5x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 5x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.69 km/h
(5.47 m/s)
|
0.02 J | |
| 30 mm |
34.09 km/h
(9.47 m/s)
|
0.07 J | |
| 50 mm |
44.02 km/h
(12.23 m/s)
|
0.11 J | |
| 100 mm |
62.25 km/h
(17.29 m/s)
|
0.22 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 5x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 5x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 306 Mx | 13.1 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 5x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.56 kg | Standard |
| Woda (dno rzeki) |
0.64 kg
(+0.08 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.21
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Minusy
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy osłony lub uchwyty.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najwyższa nośność magnesu – od czego zależy?
- z wykorzystaniem podłoża ze miękkiej stali, która służy jako idealny przewodnik strumienia
- posiadającej grubość minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni styku
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Dystans (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Kruchy spiek
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Ryzyko zmiażdżenia
Duże magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Zakaz obróbki
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Ostrożność wymagana
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Smartfony i tablety
Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Produkt nie dla dzieci
Silne magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Alergia na nikiel
Pewna grupa użytkowników wykazuje nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może wywołać zaczerwienienie skóry. Zalecamy używanie rękawic bezlateksowych.
Ochrona urządzeń
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
Interferencja medyczna
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
