MW 55x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010081
GTIN/EAN: 5906301810803
Średnica Ø
55 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
445.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
92.25 kg / 904.94 N
Indukcja magnetyczna
416.97 mT / 4170 Gs
Powłoka
[NiCuNi] nikiel
154.21 ZŁ z VAT / szt. + cena za transport
125.37 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie pisz korzystając z
formularz
przez naszą stronę.
Udźwig a także wygląd magnesu neodymowego skontrolujesz w naszym
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MW 55x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 55x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010081 |
| GTIN/EAN | 5906301810803 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 55 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 445.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 92.25 kg / 904.94 N |
| Indukcja magnetyczna ~ ? | 416.97 mT / 4170 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Poniższe informacje stanowią bezpośredni efekt analizy matematycznej. Wartości zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 55x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4169 Gs
416.9 mT
|
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
krytyczny poziom |
| 1 mm |
4034 Gs
403.4 mT
|
86.37 kg / 190.41 lbs
86369.8 g / 847.3 N
|
krytyczny poziom |
| 2 mm |
3894 Gs
389.4 mT
|
80.47 kg / 177.41 lbs
80469.7 g / 789.4 N
|
krytyczny poziom |
| 3 mm |
3751 Gs
375.1 mT
|
74.67 kg / 164.62 lbs
74670.6 g / 732.5 N
|
krytyczny poziom |
| 5 mm |
3461 Gs
346.1 mT
|
63.58 kg / 140.17 lbs
63580.6 g / 623.7 N
|
krytyczny poziom |
| 10 mm |
2756 Gs
275.6 mT
|
40.32 kg / 88.89 lbs
40320.8 g / 395.5 N
|
krytyczny poziom |
| 15 mm |
2140 Gs
214.0 mT
|
24.31 kg / 53.59 lbs
24308.3 g / 238.5 N
|
krytyczny poziom |
| 20 mm |
1644 Gs
164.4 mT
|
14.34 kg / 31.61 lbs
14338.1 g / 140.7 N
|
krytyczny poziom |
| 30 mm |
975 Gs
97.5 mT
|
5.05 kg / 11.12 lbs
5046.0 g / 49.5 N
|
mocny |
| 50 mm |
388 Gs
38.8 mT
|
0.80 kg / 1.77 lbs
801.0 g / 7.9 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 55x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.45 kg / 40.68 lbs
18450.0 g / 181.0 N
|
| 1 mm | Stal (~0.2) |
17.27 kg / 38.08 lbs
17274.0 g / 169.5 N
|
| 2 mm | Stal (~0.2) |
16.09 kg / 35.48 lbs
16094.0 g / 157.9 N
|
| 3 mm | Stal (~0.2) |
14.93 kg / 32.92 lbs
14934.0 g / 146.5 N
|
| 5 mm | Stal (~0.2) |
12.72 kg / 28.03 lbs
12716.0 g / 124.7 N
|
| 10 mm | Stal (~0.2) |
8.06 kg / 17.78 lbs
8064.0 g / 79.1 N
|
| 15 mm | Stal (~0.2) |
4.86 kg / 10.72 lbs
4862.0 g / 47.7 N
|
| 20 mm | Stal (~0.2) |
2.87 kg / 6.32 lbs
2868.0 g / 28.1 N
|
| 30 mm | Stal (~0.2) |
1.01 kg / 2.23 lbs
1010.0 g / 9.9 N
|
| 50 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 55x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
27.68 kg / 61.01 lbs
27675.0 g / 271.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.45 kg / 40.68 lbs
18450.0 g / 181.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.23 kg / 20.34 lbs
9225.0 g / 90.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
46.13 kg / 101.69 lbs
46125.0 g / 452.5 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 55x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
| 1 mm |
|
7.69 kg / 16.95 lbs
7687.5 g / 75.4 N
|
| 2 mm |
|
15.37 kg / 33.90 lbs
15375.0 g / 150.8 N
|
| 3 mm |
|
23.06 kg / 50.84 lbs
23062.5 g / 226.2 N
|
| 5 mm |
|
38.44 kg / 84.74 lbs
38437.5 g / 377.1 N
|
| 10 mm |
|
76.88 kg / 169.48 lbs
76875.0 g / 754.1 N
|
| 11 mm |
|
84.56 kg / 186.43 lbs
84562.5 g / 829.6 N
|
| 12 mm |
|
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 55x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
92.25 kg / 203.38 lbs
92250.0 g / 905.0 N
|
OK |
| 40 °C | -2.2% |
90.22 kg / 198.90 lbs
90220.5 g / 885.1 N
|
OK |
| 60 °C | -4.4% |
88.19 kg / 194.43 lbs
88191.0 g / 865.2 N
|
|
| 80 °C | -6.6% |
86.16 kg / 189.95 lbs
86161.5 g / 845.2 N
|
|
| 100 °C | -28.8% |
65.68 kg / 144.80 lbs
65682.0 g / 644.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 55x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
254.60 kg / 561.30 lbs
5 431 Gs
|
38.19 kg / 84.20 lbs
38190 g / 374.6 N
|
N/A |
| 1 mm |
246.57 kg / 543.59 lbs
8 206 Gs
|
36.99 kg / 81.54 lbs
36985 g / 362.8 N
|
221.91 kg / 489.23 lbs
~0 Gs
|
| 2 mm |
238.37 kg / 525.52 lbs
8 068 Gs
|
35.76 kg / 78.83 lbs
35756 g / 350.8 N
|
214.54 kg / 472.97 lbs
~0 Gs
|
| 3 mm |
230.21 kg / 507.52 lbs
7 929 Gs
|
34.53 kg / 76.13 lbs
34531 g / 338.7 N
|
207.19 kg / 456.77 lbs
~0 Gs
|
| 5 mm |
214.04 kg / 471.88 lbs
7 645 Gs
|
32.11 kg / 70.78 lbs
32106 g / 315.0 N
|
192.64 kg / 424.69 lbs
~0 Gs
|
| 10 mm |
175.48 kg / 386.86 lbs
6 923 Gs
|
26.32 kg / 58.03 lbs
26322 g / 258.2 N
|
157.93 kg / 348.17 lbs
~0 Gs
|
| 20 mm |
111.28 kg / 245.33 lbs
5 513 Gs
|
16.69 kg / 36.80 lbs
16692 g / 163.8 N
|
100.15 kg / 220.80 lbs
~0 Gs
|
| 50 mm |
23.33 kg / 51.43 lbs
2 524 Gs
|
3.50 kg / 7.71 lbs
3499 g / 34.3 N
|
20.99 kg / 46.28 lbs
~0 Gs
|
| 60 mm |
13.93 kg / 30.70 lbs
1 950 Gs
|
2.09 kg / 4.61 lbs
2089 g / 20.5 N
|
12.53 kg / 27.63 lbs
~0 Gs
|
| 70 mm |
8.48 kg / 18.70 lbs
1 522 Gs
|
1.27 kg / 2.81 lbs
1272 g / 12.5 N
|
7.63 kg / 16.83 lbs
~0 Gs
|
| 80 mm |
5.29 kg / 11.66 lbs
1 202 Gs
|
0.79 kg / 1.75 lbs
793 g / 7.8 N
|
4.76 kg / 10.50 lbs
~0 Gs
|
| 90 mm |
3.38 kg / 7.45 lbs
961 Gs
|
0.51 kg / 1.12 lbs
507 g / 5.0 N
|
3.04 kg / 6.70 lbs
~0 Gs
|
| 100 mm |
2.21 kg / 4.87 lbs
777 Gs
|
0.33 kg / 0.73 lbs
332 g / 3.3 N
|
1.99 kg / 4.39 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 55x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 27.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 21.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 17.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 13.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 12.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 55x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.05 km/h
(5.01 m/s)
|
5.60 J | |
| 30 mm |
25.98 km/h
(7.22 m/s)
|
11.60 J | |
| 50 mm |
32.63 km/h
(9.06 m/s)
|
18.30 J | |
| 100 mm |
45.90 km/h
(12.75 m/s)
|
36.21 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 55x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 55x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 101 075 Mx | 1010.7 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 55x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 92.25 kg | Standard |
| Woda (dno rzeki) |
105.63 kg
(+13.38 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Są niezbędne w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub uchwyty.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- przy zerowej szczelinie (bez zanieczyszczeń)
- przy pionowym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Co więcej, nawet minimalna przerwa między magnesem, a blachą redukuje siłę trzymania.
Zasady BHP dla użytkowników magnesów
Alergia na nikiel
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Uszkodzenia czujników
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Ryzyko pęknięcia
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Ochrona urządzeń
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Łatwopalność
Pył generowany podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Zasady obsługi
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Implanty kardiologiczne
Pacjenci z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Utrata mocy w cieple
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Zagrożenie dla najmłodszych
Magnesy neodymowe nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
