MW 50x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010080
GTIN/EAN: 5906301810797
Średnica Ø
50 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
294.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
70.10 kg / 687.66 N
Indukcja magnetyczna
387.23 mT / 3872 Gs
Powłoka
[NiCuNi] nikiel
106.96 ZŁ z VAT / szt. + cena za transport
86.96 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo daj znać przez
formularz kontaktowy
przez naszą stronę.
Parametry a także wygląd magnesów neodymowych skontrolujesz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry - MW 50x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 50x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010080 |
| GTIN/EAN | 5906301810797 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 50 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 294.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 70.10 kg / 687.66 N |
| Indukcja magnetyczna ~ ? | 387.23 mT / 3872 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Przedstawione dane stanowią rezultat symulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 50x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3872 Gs
387.2 mT
|
70.10 kg / 70100.0 g
687.7 N
|
niebezpieczny! |
| 1 mm |
3740 Gs
374.0 mT
|
65.41 kg / 65408.0 g
641.7 N
|
niebezpieczny! |
| 2 mm |
3601 Gs
360.1 mT
|
60.65 kg / 60652.7 g
595.0 N
|
niebezpieczny! |
| 3 mm |
3459 Gs
345.9 mT
|
55.95 kg / 55950.5 g
548.9 N
|
niebezpieczny! |
| 5 mm |
3168 Gs
316.8 mT
|
46.94 kg / 46935.3 g
460.4 N
|
niebezpieczny! |
| 10 mm |
2460 Gs
246.0 mT
|
28.31 kg / 28306.3 g
277.7 N
|
niebezpieczny! |
| 15 mm |
1855 Gs
185.5 mT
|
16.10 kg / 16095.6 g
157.9 N
|
niebezpieczny! |
| 20 mm |
1384 Gs
138.4 mT
|
8.96 kg / 8963.2 g
87.9 N
|
mocny |
| 30 mm |
782 Gs
78.2 mT
|
2.86 kg / 2863.1 g
28.1 N
|
mocny |
| 50 mm |
293 Gs
29.3 mT
|
0.40 kg / 402.4 g
3.9 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 50x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
14.02 kg / 14020.0 g
137.5 N
|
| 1 mm | Stal (~0.2) |
13.08 kg / 13082.0 g
128.3 N
|
| 2 mm | Stal (~0.2) |
12.13 kg / 12130.0 g
119.0 N
|
| 3 mm | Stal (~0.2) |
11.19 kg / 11190.0 g
109.8 N
|
| 5 mm | Stal (~0.2) |
9.39 kg / 9388.0 g
92.1 N
|
| 10 mm | Stal (~0.2) |
5.66 kg / 5662.0 g
55.5 N
|
| 15 mm | Stal (~0.2) |
3.22 kg / 3220.0 g
31.6 N
|
| 20 mm | Stal (~0.2) |
1.79 kg / 1792.0 g
17.6 N
|
| 30 mm | Stal (~0.2) |
0.57 kg / 572.0 g
5.6 N
|
| 50 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 50x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
21.03 kg / 21030.0 g
206.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
14.02 kg / 14020.0 g
137.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
7.01 kg / 7010.0 g
68.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
35.05 kg / 35050.0 g
343.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 50x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.34 kg / 2336.7 g
22.9 N
|
| 1 mm |
|
5.84 kg / 5841.7 g
57.3 N
|
| 2 mm |
|
11.68 kg / 11683.3 g
114.6 N
|
| 5 mm |
|
29.21 kg / 29208.3 g
286.5 N
|
| 10 mm |
|
58.42 kg / 58416.7 g
573.1 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MW 50x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
70.10 kg / 70100.0 g
687.7 N
|
OK |
| 40 °C | -2.2% |
68.56 kg / 68557.8 g
672.6 N
|
OK |
| 60 °C | -4.4% |
67.02 kg / 67015.6 g
657.4 N
|
|
| 80 °C | -6.6% |
65.47 kg / 65473.4 g
642.3 N
|
|
| 100 °C | -28.8% |
49.91 kg / 49911.2 g
489.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 50x20 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
181.46 kg / 181465 g
1780.2 N
5 255 Gs
|
N/A |
| 1 mm |
175.47 kg / 175470 g
1721.4 N
7 615 Gs
|
157.92 kg / 157923 g
1549.2 N
~0 Gs
|
| 2 mm |
169.32 kg / 169319 g
1661.0 N
7 480 Gs
|
152.39 kg / 152387 g
1494.9 N
~0 Gs
|
| 3 mm |
163.16 kg / 163157 g
1600.6 N
7 343 Gs
|
146.84 kg / 146842 g
1440.5 N
~0 Gs
|
| 5 mm |
150.90 kg / 150895 g
1480.3 N
7 061 Gs
|
135.81 kg / 135806 g
1332.3 N
~0 Gs
|
| 10 mm |
121.50 kg / 121499 g
1191.9 N
6 336 Gs
|
109.35 kg / 109349 g
1072.7 N
~0 Gs
|
| 20 mm |
73.28 kg / 73275 g
718.8 N
4 921 Gs
|
65.95 kg / 65948 g
646.9 N
~0 Gs
|
| 50 mm |
12.99 kg / 12985 g
127.4 N
2 071 Gs
|
11.69 kg / 11687 g
114.6 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 50x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 15.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 11.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 50x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.09 km/h
(5.30 m/s)
|
4.14 J | |
| 30 mm |
27.63 km/h
(7.67 m/s)
|
8.67 J | |
| 50 mm |
34.92 km/h
(9.70 m/s)
|
13.85 J | |
| 100 mm |
49.21 km/h
(13.67 m/s)
|
27.51 J |
Tabela 9: Parametry powłoki (trwałość)
MW 50x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 50x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 78 540 Mx | 785.4 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 50x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 70.10 kg | Standard |
| Woda (dno rzeki) |
80.26 kg
(+10.16 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda płyta nie przyjmuje całego pola, przez co część mocy marnuje się w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia nasycenie pola. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Uczulenie na powłokę
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Łatwopalność
Proszek powstający podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Karty i dyski
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Siła zgniatająca
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni między dwa silne magnesy.
Zakaz zabawy
Magnesy neodymowe nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
