Neodymy – pełny wybór kształtów

Potrzebujesz silnego pola magnetycznego? Posiadamy w sprzedaży kompleksowy asortyment magnesów o różnych kształtach i wymiarach. Są one idealne do zastosowań domowych, warsztatu oraz zadań przemysłowych. Zobacz produkty z szybką wysyłką.

poznaj cennik i wymiary

Zestawy do magnet fishing (hobbystów)

Rozpocznij przygodę polegającą na poszukiwaniu skarbów pod wodą! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w każdej wodzie.

wybierz sprzęt do poszukiwań

Magnetyczne rozwiązania dla firm

Sprawdzone rozwiązania do mocowania bez wiercenia. Mocowania gwintowane (M8, M10, M12) zapewniają błyskawiczną organizację pracy na magazynach. Są niezastąpione przy instalacji oświetlenia, czujników oraz banerów.

sprawdź dostępne gwinty

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 10x3 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010008

GTIN/EAN: 5906301810070

5.00

Średnica Ø

10 mm [±0,1 mm]

Wysokość

3 mm [±0,1 mm]

Waga

1.77 g

Kierunek magnesowania

↑ osiowy

Udźwig

2.15 kg / 21.04 N

Indukcja magnetyczna

318.70 mT / 3187 Gs

Powłoka

[NiCuNi] nikiel

0.726 z VAT / szt. + cena za transport

0.590 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.590 ZŁ
0.726 ZŁ
cena od 1360 szt.
0.531 ZŁ
0.653 ZŁ
cena od 2720 szt.
0.519 ZŁ
0.639 ZŁ
Potrzebujesz porady?

Zadzwoń do nas +48 22 499 98 98 alternatywnie napisz przez formularz kontaktowy przez naszą stronę.
Moc oraz kształt magnesu neodymowego zweryfikujesz u nas w modułowym kalkulatorze.

Realizacja tego samego dnia przy zamówieniu do 14:00.

Parametry techniczne - MW 10x3 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 10x3 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010008
GTIN/EAN 5906301810070
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 10 mm [±0,1 mm]
Wysokość 3 mm [±0,1 mm]
Waga 1.77 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 2.15 kg / 21.04 N
Indukcja magnetyczna ~ ? 318.70 mT / 3187 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 10x3 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu neodymowego - parametry techniczne

Przedstawione informacje stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 10x3 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 3185 Gs
318.5 mT
2.15 kg / 2150.0 g
21.1 N
średnie ryzyko
1 mm 2657 Gs
265.7 mT
1.50 kg / 1496.2 g
14.7 N
niskie ryzyko
2 mm 2081 Gs
208.1 mT
0.92 kg / 918.1 g
9.0 N
niskie ryzyko
3 mm 1573 Gs
157.3 mT
0.52 kg / 524.4 g
5.1 N
niskie ryzyko
5 mm 874 Gs
87.4 mT
0.16 kg / 161.7 g
1.6 N
niskie ryzyko
10 mm 241 Gs
24.1 mT
0.01 kg / 12.3 g
0.1 N
niskie ryzyko
15 mm 92 Gs
9.2 mT
0.00 kg / 1.8 g
0.0 N
niskie ryzyko
20 mm 44 Gs
4.4 mT
0.00 kg / 0.4 g
0.0 N
niskie ryzyko
30 mm 14 Gs
1.4 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
50 mm 3 Gs
0.3 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko

Tabela 2: Siła równoległa ześlizgu (pion)
MW 10x3 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.43 kg / 430.0 g
4.2 N
1 mm Stal (~0.2) 0.30 kg / 300.0 g
2.9 N
2 mm Stal (~0.2) 0.18 kg / 184.0 g
1.8 N
3 mm Stal (~0.2) 0.10 kg / 104.0 g
1.0 N
5 mm Stal (~0.2) 0.03 kg / 32.0 g
0.3 N
10 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 10x3 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.64 kg / 645.0 g
6.3 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.43 kg / 430.0 g
4.2 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.22 kg / 215.0 g
2.1 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
1.08 kg / 1075.0 g
10.5 N

Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 10x3 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.22 kg / 215.0 g
2.1 N
1 mm
25%
0.54 kg / 537.5 g
5.3 N
2 mm
50%
1.08 kg / 1075.0 g
10.5 N
5 mm
100%
2.15 kg / 2150.0 g
21.1 N
10 mm
100%
2.15 kg / 2150.0 g
21.1 N

Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 10x3 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 2.15 kg / 2150.0 g
21.1 N
OK
40 °C -2.2% 2.10 kg / 2102.7 g
20.6 N
OK
60 °C -4.4% 2.06 kg / 2055.4 g
20.2 N
80 °C -6.6% 2.01 kg / 2008.1 g
19.7 N
100 °C -28.8% 1.53 kg / 1530.8 g
15.0 N

Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 10x3 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 4.91 kg / 4913 g
48.2 N
4 754 Gs
N/A
1 mm 4.18 kg / 4181 g
41.0 N
5 877 Gs
3.76 kg / 3763 g
36.9 N
~0 Gs
2 mm 3.42 kg / 3419 g
33.5 N
5 314 Gs
3.08 kg / 3077 g
30.2 N
~0 Gs
3 mm 2.71 kg / 2711 g
26.6 N
4 732 Gs
2.44 kg / 2440 g
23.9 N
~0 Gs
5 mm 1.59 kg / 1595 g
15.6 N
3 630 Gs
1.44 kg / 1435 g
14.1 N
~0 Gs
10 mm 0.37 kg / 369 g
3.6 N
1 747 Gs
0.33 kg / 333 g
3.3 N
~0 Gs
20 mm 0.03 kg / 28 g
0.3 N
483 Gs
0.03 kg / 25 g
0.2 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
48 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 10x3 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 10x3 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 35.27 km/h
(9.80 m/s)
0.08 J
30 mm 60.88 km/h
(16.91 m/s)
0.25 J
50 mm 78.60 km/h
(21.83 m/s)
0.42 J
100 mm 111.15 km/h
(30.88 m/s)
0.84 J

Tabela 9: Parametry powłoki (trwałość)
MW 10x3 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Flux)
MW 10x3 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 694 Mx 26.9 µWb
Współczynnik Pc 0.40 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 10x3 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 2.15 kg Standard
Woda (dno rzeki) 2.46 kg
(+0.31 kg Zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na ścianie (ześlizg)

*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły prostopadłej.

2. Nasycenie magnetyczne

*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.

3. Spadek mocy w temperaturze

*W klasie N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010008-2025
Przelicznik magnesów
Siła oderwania

Pole magnetyczne

Sprawdź inne produkty

Oferowany produkt to wyjątkowo silny magnes walcowy, który został wykonany z nowoczesnego materiału NdFeB, co przy wymiarach Ø10x3 mm gwarantuje optymalną moc. Model MW 10x3 / N38 charakteryzuje się tolerancją ±0,1mm oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla najbardziej wymagających inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 2.15 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych sensorów Halla oraz wydajnych filtrów, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 21.04 N przy wadze zaledwie 1.77 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na delikatną strukturę spieku ceramicznego, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego precyzyjnego komponentu. Dla zapewnienia stabilności w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Magnesy N38 są odpowiednie do 90% zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø10x3), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø10x3 mm, co przy wadze 1.77 g czyni go elementem o imponującej gęstości energii magnetycznej. Wartość 21.04 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 1.77 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 10 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady i zalety neodymowych magnesów Nd2Fe14B.

Korzyści

Neodymy to nie tylko siła, ale także inne istotne cechy, w tym::
  • Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
  • Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
  • Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
  • Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
  • Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
  • Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
  • Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.

Wady

Mimo zalet, posiadają też wady:
  • Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
  • Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
  • Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.

Parametry udźwigu

Wytrzymałość magnetyczna na maksimum – co się na to składa?

Podany w tabeli udźwig jest rezultatem pomiaru przeprowadzonego w specyficznych, idealnych warunkach:
  • z wykorzystaniem blachy ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
  • posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
  • o szlifowanej powierzchni styku
  • w warunkach bezszczelinowych (metal do metalu)
  • dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
  • przy temperaturze pokojowej

Kluczowe elementy wpływające na udźwig

Na skuteczność trzymania wpływają konkretne warunki, m.in. (od najważniejszych):
  • Dystans – obecność ciała obcego (farba, taśma, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
  • Kierunek działania siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość blachy – za chuda stal powoduje nasycenie magnetyczne, przez co część mocy jest tracona w powietrzu.
  • Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
  • Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
  • Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).

Udźwig określano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Co więcej, nawet drobny odstęp między magnesem, a blachą redukuje siłę trzymania.

Zasady BHP dla użytkowników magnesów
Uwaga: zadławienie

Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.

Zakłócenia GPS i telefonów

Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.

Alergia na nikiel

Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.

Samozapłon

Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.

Pole magnetyczne a elektronika

Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.

Niebezpieczeństwo przytrzaśnięcia

Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!

Kruchy spiek

Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.

Ogromna siła

Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.

Utrata mocy w cieple

Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.

Uwaga medyczna

Osoby z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.

Uwaga! Szukasz szczegółów? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98