MW 4x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010077
GTIN: 5906301810766
Średnica Ø
4 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
0.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.46 kg / 4.48 N
Indukcja magnetyczna
573.83 mT / 5738 Gs
Powłoka
[NiCuNi] nikiel
0.320 ZŁ z VAT / szt. + cena za transport
0.260 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie zostaw wiadomość poprzez
formularz
w sekcji kontakt.
Udźwig oraz budowę magnesu neodymowego sprawdzisz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 4x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 4x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010077 |
| GTIN | 5906301810766 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 4 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 0.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.46 kg / 4.48 N |
| Indukcja magnetyczna ~ ? | 573.83 mT / 5738 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Poniższe informacje stanowią wynik kalkulacji inżynierskiej. Wyniki oparte są na modelach dla materiału NdFeB. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
MW 4x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5727 Gs
572.7 mT
|
0.46 kg / 460.0 g
4.5 N
|
słaby uchwyt |
| 1 mm |
3109 Gs
310.9 mT
|
0.14 kg / 135.6 g
1.3 N
|
słaby uchwyt |
| 2 mm |
1577 Gs
157.7 mT
|
0.03 kg / 34.9 g
0.3 N
|
słaby uchwyt |
| 3 mm |
856 Gs
85.6 mT
|
0.01 kg / 10.3 g
0.1 N
|
słaby uchwyt |
| 5 mm |
323 Gs
32.3 mT
|
0.00 kg / 1.5 g
0.0 N
|
słaby uchwyt |
| 10 mm |
66 Gs
6.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 15 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 4x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 92.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 4x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 138.0 g
1.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 92.0 g
0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 46.0 g
0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 230.0 g
2.3 N
|
MW 4x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 46.0 g
0.5 N
|
| 1 mm |
|
0.12 kg / 115.0 g
1.1 N
|
| 2 mm |
|
0.23 kg / 230.0 g
2.3 N
|
| 5 mm |
|
0.46 kg / 460.0 g
4.5 N
|
| 10 mm |
|
0.46 kg / 460.0 g
4.5 N
|
MW 4x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.46 kg / 460.0 g
4.5 N
|
OK |
| 40 °C | -2.2% |
0.45 kg / 449.9 g
4.4 N
|
OK |
| 60 °C | -4.4% |
0.44 kg / 439.8 g
4.3 N
|
OK |
| 80 °C | -6.6% |
0.43 kg / 429.6 g
4.2 N
|
|
| 100 °C | -28.8% |
0.33 kg / 327.5 g
3.2 N
|
MW 4x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.46 kg / 465 g
4.6 N
11 513 Gs
|
N/A |
| 1 mm |
0.14 kg / 136 g
1.3 N
8 646 Gs
|
0.12 kg / 122 g
1.2 N
~0 Gs
|
| 2 mm |
0.03 kg / 35 g
0.3 N
6 218 Gs
|
0.03 kg / 31 g
0.3 N
~0 Gs
|
| 3 mm |
0.01 kg / 10 g
0.1 N
4 412 Gs
|
0.01 kg / 9 g
0.1 N
~0 Gs
|
| 5 mm |
0.00 kg / 1 g
0.0 N
2 299 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 10 mm |
0.00 kg / 0 g
0.0 N
646 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
132 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
12 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 4x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 4x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.55 km/h
(8.76 m/s)
|
0.02 J | |
| 30 mm |
54.65 km/h
(15.18 m/s)
|
0.05 J | |
| 50 mm |
70.55 km/h
(19.60 m/s)
|
0.09 J | |
| 100 mm |
99.77 km/h
(27.71 m/s)
|
0.18 J |
MW 4x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 4x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 760 Mx | 7.6 µWb |
| Współczynnik Pc | 1.00 | Wysoki (Stabilny) |
MW 4x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.46 kg | Standard |
| Woda (dno rzeki) |
0.53 kg
(+0.07 kg Zysk z wyporności)
|
+14.5% |
Sprawdź inne oferty
Wady oraz zalety magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok wysokiej siły, produkty te wyróżniają się następującymi zaletami:
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi zaledwie ~1% (wg testów).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Warto znać też słabe strony magnesów neodymowych:
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Maksymalna moc trzymania magnesu – co ma na to wpływ?
Moc magnesu to rezultat pomiaru dla optymalnej konfiguracji, uwzględniającej:
- z wykorzystaniem podłoża ze miękkiej stali, działającej jako element zamykający obwód
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
W rzeczywistych zastosowaniach, realna moc jest determinowana przez wielu zmiennych, uszeregowanych od najbardziej istotnych:
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Materiał blachy – stal miękka przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Należy pamiętać o limit termiczny dla danego modelu.
* Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje nośność.
Bezpieczna praca z magnesami neodymowymi
Niebezpieczeństwo przytrzaśnięcia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Pole magnetyczne a elektronika
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Przegrzanie magnesu
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Ogromna siła
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Dla uczulonych
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Podatność na pękanie
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Zakaz obróbki
Pył powstający podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.
Chronić przed dziećmi
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Ostrzeżenie!
Więcej informacji o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesem.
