MW 4x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010077
GTIN/EAN: 5906301810766
Średnica Ø
4 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
0.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.46 kg / 4.48 N
Indukcja magnetyczna
573.83 mT / 5738 Gs
Powłoka
[NiCuNi] nikiel
0.320 ZŁ z VAT / szt. + cena za transport
0.260 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie napisz poprzez
formularz kontaktowy
na stronie kontakt.
Siłę oraz budowę magnesów neodymowych wyliczysz w naszym
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja - MW 4x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 4x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010077 |
| GTIN/EAN | 5906301810766 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 4 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 0.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.46 kg / 4.48 N |
| Indukcja magnetyczna ~ ? | 573.83 mT / 5738 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Niniejsze wartości są bezpośredni efekt symulacji fizycznej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 4x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5727 Gs
572.7 mT
|
0.46 kg / 460.0 g
4.5 N
|
niskie ryzyko |
| 1 mm |
3109 Gs
310.9 mT
|
0.14 kg / 135.6 g
1.3 N
|
niskie ryzyko |
| 2 mm |
1577 Gs
157.7 mT
|
0.03 kg / 34.9 g
0.3 N
|
niskie ryzyko |
| 3 mm |
856 Gs
85.6 mT
|
0.01 kg / 10.3 g
0.1 N
|
niskie ryzyko |
| 5 mm |
323 Gs
32.3 mT
|
0.00 kg / 1.5 g
0.0 N
|
niskie ryzyko |
| 10 mm |
66 Gs
6.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 15 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 4x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 92.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 4x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.14 kg / 138.0 g
1.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 92.0 g
0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 46.0 g
0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.23 kg / 230.0 g
2.3 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 4x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 46.0 g
0.5 N
|
| 1 mm |
|
0.12 kg / 115.0 g
1.1 N
|
| 2 mm |
|
0.23 kg / 230.0 g
2.3 N
|
| 5 mm |
|
0.46 kg / 460.0 g
4.5 N
|
| 10 mm |
|
0.46 kg / 460.0 g
4.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 4x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.46 kg / 460.0 g
4.5 N
|
OK |
| 40 °C | -2.2% |
0.45 kg / 449.9 g
4.4 N
|
OK |
| 60 °C | -4.4% |
0.44 kg / 439.8 g
4.3 N
|
OK |
| 80 °C | -6.6% |
0.43 kg / 429.6 g
4.2 N
|
|
| 100 °C | -28.8% |
0.33 kg / 327.5 g
3.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 4x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.54 kg / 2541 g
24.9 N
6 049 Gs
|
N/A |
| 1 mm |
1.45 kg / 1448 g
14.2 N
8 646 Gs
|
1.30 kg / 1303 g
12.8 N
~0 Gs
|
| 2 mm |
0.75 kg / 749 g
7.3 N
6 218 Gs
|
0.67 kg / 674 g
6.6 N
~0 Gs
|
| 3 mm |
0.38 kg / 377 g
3.7 N
4 412 Gs
|
0.34 kg / 339 g
3.3 N
~0 Gs
|
| 5 mm |
0.10 kg / 102 g
1.0 N
2 299 Gs
|
0.09 kg / 92 g
0.9 N
~0 Gs
|
| 10 mm |
0.01 kg / 8 g
0.1 N
646 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
132 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
12 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 4x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 4x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.55 km/h
(8.76 m/s)
|
0.02 J | |
| 30 mm |
54.65 km/h
(15.18 m/s)
|
0.05 J | |
| 50 mm |
70.55 km/h
(19.60 m/s)
|
0.09 J | |
| 100 mm |
99.77 km/h
(27.71 m/s)
|
0.18 J |
Tabela 9: Odporność na korozję
MW 4x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 4x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 760 Mx | 7.6 µWb |
| Współczynnik Pc | 1.00 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 4x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.46 kg | Standard |
| Woda (dno rzeki) |
0.53 kg
(+0.07 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.00
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której grubość sięga przynajmniej 10 mm
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (bez farby)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
- Odstęp (pomiędzy magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – zbyt cienka płyta nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Wpływ na smartfony
Pamiętaj: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Zagrożenie dla najmłodszych
Magnesy neodymowe nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Trwała utrata siły
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Poważne obrażenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Bezpieczna praca
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Zakaz obróbki
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
