Neodymy – pełny wybór kształtów

Chcesz kupić naprawdę silne magnesy? Mamy w ofercie kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do zastosowań domowych, warsztatu oraz modelarstwa. Zobacz produkty w naszym magazynie.

zobacz katalog magnesów

Magnet fishing: solidne zestawy F200/F400

Odkryj pasję związaną z eksploracją dna! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz wzmocnione liny sprawdzą się w trudnych warunkach wodnych.

wybierz zestaw dla siebie

Uchwyty magnetyczne przemysłowe

Sprawdzone rozwiązania do mocowania bez wiercenia. Mocowania gwintowane (M8, M10, M12) gwarantują błyskawiczną organizację pracy na halach produkcyjnych. Idealnie nadają się przy instalacji oświetlenia, czujników oraz reklam.

sprawdź zastosowania przemysłowe

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 4x4 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010076

GTIN/EAN: 5906301810759

5.00

Średnica Ø

4 mm [±0,1 mm]

Wysokość

4 mm [±0,1 mm]

Waga

0.38 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.51 kg / 4.96 N

Indukcja magnetyczna

552.79 mT / 5528 Gs

Powłoka

[NiCuNi] nikiel

0.406 z VAT / szt. + cena za transport

0.330 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.330 ZŁ
0.406 ZŁ
cena od 7420 szt.
0.297 ZŁ
0.365 ZŁ
cena od 14840 szt.
0.290 ZŁ
0.357 ZŁ
Nie wiesz co wybrać?

Zadzwoń do nas +48 888 99 98 98 albo daj znać korzystając z formularz zgłoszeniowy na stronie kontaktowej.
Moc i wygląd magnesu neodymowego skontrolujesz w naszym kalkulatorze magnetycznym.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Karta produktu - MW 4x4 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 4x4 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010076
GTIN/EAN 5906301810759
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 4 mm [±0,1 mm]
Wysokość 4 mm [±0,1 mm]
Waga 0.38 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.51 kg / 4.96 N
Indukcja magnetyczna ~ ? 552.79 mT / 5528 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 4x4 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza techniczna magnesu - raport

Niniejsze wartości są rezultat analizy fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 4x4 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 5517 Gs
551.7 mT
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
niskie ryzyko
1 mm 2984 Gs
298.4 mT
0.15 kg / 0.33 lbs
149.2 g / 1.5 N
niskie ryzyko
2 mm 1498 Gs
149.8 mT
0.04 kg / 0.08 lbs
37.6 g / 0.4 N
niskie ryzyko
3 mm 803 Gs
80.3 mT
0.01 kg / 0.02 lbs
10.8 g / 0.1 N
niskie ryzyko
5 mm 296 Gs
29.6 mT
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
niskie ryzyko
10 mm 58 Gs
5.8 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
15 mm 20 Gs
2.0 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
20 mm 9 Gs
0.9 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
30 mm 3 Gs
0.3 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Równoległa siła ześlizgu (pion)
MW 4x4 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.10 kg / 0.22 lbs
102.0 g / 1.0 N
1 mm Stal (~0.2) 0.03 kg / 0.07 lbs
30.0 g / 0.3 N
2 mm Stal (~0.2) 0.01 kg / 0.02 lbs
8.0 g / 0.1 N
3 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N
5 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 4x4 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.15 kg / 0.34 lbs
153.0 g / 1.5 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.05 kg / 0.11 lbs
51.0 g / 0.5 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.26 kg / 0.56 lbs
255.0 g / 2.5 N

Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 4x4 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.05 kg / 0.11 lbs
51.0 g / 0.5 N
1 mm
25%
0.13 kg / 0.28 lbs
127.5 g / 1.3 N
2 mm
50%
0.26 kg / 0.56 lbs
255.0 g / 2.5 N
3 mm
75%
0.38 kg / 0.84 lbs
382.5 g / 3.8 N
5 mm
100%
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
10 mm
100%
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
11 mm
100%
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
12 mm
100%
0.51 kg / 1.12 lbs
510.0 g / 5.0 N

Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 4x4 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 0.51 kg / 1.12 lbs
510.0 g / 5.0 N
OK
40 °C -2.2% 0.50 kg / 1.10 lbs
498.8 g / 4.9 N
OK
60 °C -4.4% 0.49 kg / 1.07 lbs
487.6 g / 4.8 N
OK
80 °C -6.6% 0.48 kg / 1.05 lbs
476.3 g / 4.7 N
100 °C -28.8% 0.36 kg / 0.80 lbs
363.1 g / 3.6 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 4x4 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła zsuwania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 2.36 kg / 5.20 lbs
5 984 Gs
0.35 kg / 0.78 lbs
354 g / 3.5 N
N/A
1 mm 1.34 kg / 2.96 lbs
8 324 Gs
0.20 kg / 0.44 lbs
201 g / 2.0 N
1.21 kg / 2.66 lbs
~0 Gs
2 mm 0.69 kg / 1.52 lbs
5 968 Gs
0.10 kg / 0.23 lbs
103 g / 1.0 N
0.62 kg / 1.37 lbs
~0 Gs
3 mm 0.34 kg / 0.76 lbs
4 213 Gs
0.05 kg / 0.11 lbs
52 g / 0.5 N
0.31 kg / 0.68 lbs
~0 Gs
5 mm 0.09 kg / 0.20 lbs
2 169 Gs
0.01 kg / 0.03 lbs
14 g / 0.1 N
0.08 kg / 0.18 lbs
~0 Gs
10 mm 0.01 kg / 0.01 lbs
592 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
20 mm 0.00 kg / 0.00 lbs
116 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
1 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 4x4 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.0 cm
Implant słuchowy 10 Gs (1.0 mT) 2.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.5 cm
Pilot do auta 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 4x4 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 36.95 km/h
(10.26 m/s)
0.02 J
30 mm 63.99 km/h
(17.78 m/s)
0.06 J
50 mm 82.62 km/h
(22.95 m/s)
0.10 J
100 mm 116.84 km/h
(32.45 m/s)
0.20 J

Tabela 9: Parametry powłoki (trwałość)
MW 4x4 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Strumień)
MW 4x4 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 717 Mx 7.2 µWb
Współczynnik Pc 0.89 Wysoki (Stabilny)

Tabela 11: Hydrostatyka i wyporność
MW 4x4 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.51 kg Standard
Woda (dno rzeki) 0.58 kg
(+0.07 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.

2. Efektywność, a grubość stali

*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.

3. Stabilność termiczna

*W klasie N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Parametry inżynierskie i GPSR
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010076-2026
Kalkulator miar
Siła oderwania

Pole magnetyczne

Inne oferty

Prezentowany produkt to wyjątkowo silny magnes w kształcie walca, który został wykonany z nowoczesnego materiału NdFeB, co przy wymiarach Ø4x4 mm gwarantuje optymalną moc. Komponent MW 4x4 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 0.51 kg), produkt ten jest dostępny natychmiast z naszego polskiego centrum logistycznego, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy prądnic, zaawansowanych sensorów Halla oraz wydajnych filtrów, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 4.96 N przy wadze zaledwie 0.38 g, ten magnes cylindryczny jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 4,1 mm) przy użyciu dwuskładnikowych klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Magnesy NdFeB klasy N38 są wystarczająco silne do większości zastosowań w automatyce i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø4x4), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø4x4 mm, co przy wadze 0.38 g czyni go elementem o imponującej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 0.51 kg (siła ~4.96 N), co przy tak kompaktowych wymiarach świadczy o dużej mocy materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 4 mm. Taki układ jest standardowy przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety i wady neodymowych magnesów Nd2Fe14B.

Korzyści

Magnesy neodymowe to nie tylko siła, ale także inne istotne cechy, w tym::
  • Cechują się stabilnością – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
  • Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Dzięki powłoce (NiCuNi, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
  • Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
  • Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
  • Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
  • Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
  • Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.

Minusy

Mimo zalet, posiadają też wady:
  • Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
  • Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
  • Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.

Charakterystyka udźwigu

Optymalny udźwig magnesu neodymowegood czego zależy?

Deklarowana siła magnesu reprezentuje wartości maksymalnej, którą zmierzono w warunkach laboratoryjnych, czyli:
  • na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
  • której wymiar poprzeczny to min. 10 mm
  • z płaszczyzną wolną od rys
  • bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
  • przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
  • przy temperaturze pokojowej

Czynniki determinujące udźwig w warunkach realnych

W rzeczywistych zastosowaniach, rzeczywisty udźwig jest determinowana przez wielu zmiennych, uszeregowanych od kluczowych:
  • Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
  • Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
  • Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
  • Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
  • Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).

Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża nośność.

Środki ostrożności podczas pracy przy magnesach neodymowych
Kruchy spiek

Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.

Temperatura pracy

Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.

Zakaz obróbki

Proszek powstający podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Niebezpieczeństwo dla rozruszników

Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.

Świadome użytkowanie

Używaj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.

Uszkodzenia czujników

Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.

Ryzyko uczulenia

Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.

Siła zgniatająca

Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.

Karty i dyski

Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.

Uwaga: zadławienie

Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.

Ostrzeżenie! Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98