MW 4x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010076
GTIN/EAN: 5906301810759
Średnica Ø
4 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
0.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.51 kg / 4.96 N
Indukcja magnetyczna
552.79 mT / 5528 Gs
Powłoka
[NiCuNi] nikiel
0.406 ZŁ z VAT / szt. + cena za transport
0.330 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo daj znać korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Moc i wygląd magnesu neodymowego skontrolujesz w naszym
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Karta produktu - MW 4x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 4x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010076 |
| GTIN/EAN | 5906301810759 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 4 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 0.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.51 kg / 4.96 N |
| Indukcja magnetyczna ~ ? | 552.79 mT / 5528 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Niniejsze wartości są rezultat analizy fizycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 4x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5517 Gs
551.7 mT
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
niskie ryzyko |
| 1 mm |
2984 Gs
298.4 mT
|
0.15 kg / 0.33 lbs
149.2 g / 1.5 N
|
niskie ryzyko |
| 2 mm |
1498 Gs
149.8 mT
|
0.04 kg / 0.08 lbs
37.6 g / 0.4 N
|
niskie ryzyko |
| 3 mm |
803 Gs
80.3 mT
|
0.01 kg / 0.02 lbs
10.8 g / 0.1 N
|
niskie ryzyko |
| 5 mm |
296 Gs
29.6 mT
|
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
|
niskie ryzyko |
| 10 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
| 15 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 20 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 4x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
30.0 g / 0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 4x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.15 kg / 0.34 lbs
153.0 g / 1.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.05 kg / 0.11 lbs
51.0 g / 0.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.26 kg / 0.56 lbs
255.0 g / 2.5 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 4x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.05 kg / 0.11 lbs
51.0 g / 0.5 N
|
| 1 mm |
|
0.13 kg / 0.28 lbs
127.5 g / 1.3 N
|
| 2 mm |
|
0.26 kg / 0.56 lbs
255.0 g / 2.5 N
|
| 3 mm |
|
0.38 kg / 0.84 lbs
382.5 g / 3.8 N
|
| 5 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 10 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 11 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 12 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 4x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
OK |
| 40 °C | -2.2% |
0.50 kg / 1.10 lbs
498.8 g / 4.9 N
|
OK |
| 60 °C | -4.4% |
0.49 kg / 1.07 lbs
487.6 g / 4.8 N
|
OK |
| 80 °C | -6.6% |
0.48 kg / 1.05 lbs
476.3 g / 4.7 N
|
|
| 100 °C | -28.8% |
0.36 kg / 0.80 lbs
363.1 g / 3.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 4x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.36 kg / 5.20 lbs
5 984 Gs
|
0.35 kg / 0.78 lbs
354 g / 3.5 N
|
N/A |
| 1 mm |
1.34 kg / 2.96 lbs
8 324 Gs
|
0.20 kg / 0.44 lbs
201 g / 2.0 N
|
1.21 kg / 2.66 lbs
~0 Gs
|
| 2 mm |
0.69 kg / 1.52 lbs
5 968 Gs
|
0.10 kg / 0.23 lbs
103 g / 1.0 N
|
0.62 kg / 1.37 lbs
~0 Gs
|
| 3 mm |
0.34 kg / 0.76 lbs
4 213 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.68 lbs
~0 Gs
|
| 5 mm |
0.09 kg / 0.20 lbs
2 169 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.08 kg / 0.18 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.01 lbs
592 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
116 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
4 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 4x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 4x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
36.95 km/h
(10.26 m/s)
|
0.02 J | |
| 30 mm |
63.99 km/h
(17.78 m/s)
|
0.06 J | |
| 50 mm |
82.62 km/h
(22.95 m/s)
|
0.10 J | |
| 100 mm |
116.84 km/h
(32.45 m/s)
|
0.20 J |
Tabela 9: Parametry powłoki (trwałość)
MW 4x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 4x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 717 Mx | 7.2 µWb |
| Współczynnik Pc | 0.89 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 4x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.51 kg | Standard |
| Woda (dno rzeki) |
0.58 kg
(+0.07 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- której wymiar poprzeczny to min. 10 mm
- z płaszczyzną wolną od rys
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża nośność.
Środki ostrożności podczas pracy przy magnesach neodymowych
Kruchy spiek
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
Zakaz obróbki
Proszek powstający podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Niebezpieczeństwo dla rozruszników
Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
Świadome użytkowanie
Używaj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Ryzyko uczulenia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Siła zgniatająca
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Karty i dyski
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Uwaga: zadławienie
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
