MW 45x35 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010074
GTIN/EAN: 5906301810735
Średnica Ø
45 mm [±0,1 mm]
Wysokość
35 mm [±0,1 mm]
Waga
417.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
68.98 kg / 676.73 N
Indukcja magnetyczna
521.39 mT / 5214 Gs
Powłoka
[NiCuNi] nikiel
180.10 ZŁ z VAT / szt. + cena za transport
146.42 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
albo napisz poprzez
formularz
na stronie kontaktowej.
Masę oraz kształt magnesu neodymowego sprawdzisz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegóły techniczne - MW 45x35 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x35 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010074 |
| GTIN/EAN | 5906301810735 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 35 mm [±0,1 mm] |
| Waga | 417.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 68.98 kg / 676.73 N |
| Indukcja magnetyczna ~ ? | 521.39 mT / 5214 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Niniejsze wartości są bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 45x35 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5213 Gs
521.3 mT
|
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
niebezpieczny! |
| 1 mm |
4982 Gs
498.2 mT
|
63.01 kg / 138.91 lbs
63010.2 g / 618.1 N
|
niebezpieczny! |
| 2 mm |
4748 Gs
474.8 mT
|
57.23 kg / 126.18 lbs
57234.3 g / 561.5 N
|
niebezpieczny! |
| 3 mm |
4516 Gs
451.6 mT
|
51.76 kg / 114.10 lbs
51756.9 g / 507.7 N
|
niebezpieczny! |
| 5 mm |
4059 Gs
405.9 mT
|
41.82 kg / 92.19 lbs
41816.3 g / 410.2 N
|
niebezpieczny! |
| 10 mm |
3027 Gs
302.7 mT
|
23.26 kg / 51.29 lbs
23264.1 g / 228.2 N
|
niebezpieczny! |
| 15 mm |
2215 Gs
221.5 mT
|
12.45 kg / 27.45 lbs
12451.1 g / 122.1 N
|
niebezpieczny! |
| 20 mm |
1619 Gs
161.9 mT
|
6.66 kg / 14.67 lbs
6656.2 g / 65.3 N
|
mocny |
| 30 mm |
899 Gs
89.9 mT
|
2.05 kg / 4.52 lbs
2051.1 g / 20.1 N
|
mocny |
| 50 mm |
340 Gs
34.0 mT
|
0.29 kg / 0.65 lbs
292.8 g / 2.9 N
|
bezpieczny |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 45x35 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.80 kg / 30.41 lbs
13796.0 g / 135.3 N
|
| 1 mm | Stal (~0.2) |
12.60 kg / 27.78 lbs
12602.0 g / 123.6 N
|
| 2 mm | Stal (~0.2) |
11.45 kg / 25.23 lbs
11446.0 g / 112.3 N
|
| 3 mm | Stal (~0.2) |
10.35 kg / 22.82 lbs
10352.0 g / 101.6 N
|
| 5 mm | Stal (~0.2) |
8.36 kg / 18.44 lbs
8364.0 g / 82.1 N
|
| 10 mm | Stal (~0.2) |
4.65 kg / 10.26 lbs
4652.0 g / 45.6 N
|
| 15 mm | Stal (~0.2) |
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
| 20 mm | Stal (~0.2) |
1.33 kg / 2.94 lbs
1332.0 g / 13.1 N
|
| 30 mm | Stal (~0.2) |
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
| 50 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 45x35 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.69 kg / 45.62 lbs
20694.0 g / 203.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.80 kg / 30.41 lbs
13796.0 g / 135.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.90 kg / 15.21 lbs
6898.0 g / 67.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
34.49 kg / 76.04 lbs
34490.0 g / 338.3 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 45x35 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.30 kg / 5.07 lbs
2299.3 g / 22.6 N
|
| 1 mm |
|
5.75 kg / 12.67 lbs
5748.3 g / 56.4 N
|
| 2 mm |
|
11.50 kg / 25.35 lbs
11496.7 g / 112.8 N
|
| 3 mm |
|
17.25 kg / 38.02 lbs
17245.0 g / 169.2 N
|
| 5 mm |
|
28.74 kg / 63.36 lbs
28741.7 g / 282.0 N
|
| 10 mm |
|
57.48 kg / 126.73 lbs
57483.3 g / 563.9 N
|
| 11 mm |
|
63.23 kg / 139.40 lbs
63231.7 g / 620.3 N
|
| 12 mm |
|
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 45x35 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
OK |
| 40 °C | -2.2% |
67.46 kg / 148.73 lbs
67462.4 g / 661.8 N
|
OK |
| 60 °C | -4.4% |
65.94 kg / 145.38 lbs
65944.9 g / 646.9 N
|
OK |
| 80 °C | -6.6% |
64.43 kg / 142.04 lbs
64427.3 g / 632.0 N
|
|
| 100 °C | -28.8% |
49.11 kg / 108.28 lbs
49113.8 g / 481.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 45x35 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
266.45 kg / 587.43 lbs
5 900 Gs
|
39.97 kg / 88.11 lbs
39968 g / 392.1 N
|
N/A |
| 1 mm |
254.93 kg / 562.03 lbs
10 198 Gs
|
38.24 kg / 84.30 lbs
38240 g / 375.1 N
|
229.44 kg / 505.82 lbs
~0 Gs
|
| 2 mm |
243.39 kg / 536.59 lbs
9 965 Gs
|
36.51 kg / 80.49 lbs
36509 g / 358.2 N
|
219.05 kg / 482.93 lbs
~0 Gs
|
| 3 mm |
232.10 kg / 511.70 lbs
9 731 Gs
|
34.82 kg / 76.76 lbs
34816 g / 341.5 N
|
208.89 kg / 460.53 lbs
~0 Gs
|
| 5 mm |
210.35 kg / 463.75 lbs
9 264 Gs
|
31.55 kg / 69.56 lbs
31553 g / 309.5 N
|
189.32 kg / 417.37 lbs
~0 Gs
|
| 10 mm |
161.53 kg / 356.11 lbs
8 118 Gs
|
24.23 kg / 53.42 lbs
24229 g / 237.7 N
|
145.37 kg / 320.49 lbs
~0 Gs
|
| 20 mm |
89.86 kg / 198.12 lbs
6 055 Gs
|
13.48 kg / 29.72 lbs
13480 g / 132.2 N
|
80.88 kg / 178.30 lbs
~0 Gs
|
| 50 mm |
14.04 kg / 30.96 lbs
2 394 Gs
|
2.11 kg / 4.64 lbs
2107 g / 20.7 N
|
12.64 kg / 27.87 lbs
~0 Gs
|
| 60 mm |
7.92 kg / 17.47 lbs
1 798 Gs
|
1.19 kg / 2.62 lbs
1188 g / 11.7 N
|
7.13 kg / 15.72 lbs
~0 Gs
|
| 70 mm |
4.63 kg / 10.21 lbs
1 375 Gs
|
0.69 kg / 1.53 lbs
695 g / 6.8 N
|
4.17 kg / 9.19 lbs
~0 Gs
|
| 80 mm |
2.80 kg / 6.18 lbs
1 070 Gs
|
0.42 kg / 0.93 lbs
421 g / 4.1 N
|
2.52 kg / 5.56 lbs
~0 Gs
|
| 90 mm |
1.75 kg / 3.87 lbs
846 Gs
|
0.26 kg / 0.58 lbs
263 g / 2.6 N
|
1.58 kg / 3.48 lbs
~0 Gs
|
| 100 mm |
1.13 kg / 2.49 lbs
679 Gs
|
0.17 kg / 0.37 lbs
170 g / 1.7 N
|
1.02 kg / 2.24 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 45x35 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 26.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 16.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 12.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 11.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 45x35 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.46 km/h
(4.29 m/s)
|
3.85 J | |
| 30 mm |
22.87 km/h
(6.35 m/s)
|
8.42 J | |
| 50 mm |
29.06 km/h
(8.07 m/s)
|
13.61 J | |
| 100 mm |
41.00 km/h
(11.39 m/s)
|
27.07 J |
Tabela 9: Parametry powłoki (trwałość)
MW 45x35 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 45x35 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 83 921 Mx | 839.2 µWb |
| Współczynnik Pc | 0.78 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 45x35 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 68.98 kg | Standard |
| Woda (dno rzeki) |
78.98 kg
(+10.00 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.78
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o grubości wynoszącej minimum 10 mm
- z powierzchnią idealnie równą
- przy bezpośrednim styku (bez powłok)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Dystans (między magnesem a metalem), bowiem nawet bardzo mała odległość (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kąt przyłożenia siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig określano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Ostrzeżenia
Niklowa powłoka a alergia
Niektóre osoby posiada uczulenie na nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Sugerujemy stosowanie rękawic bezlateksowych.
Smartfony i tablety
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Nie lekceważ mocy
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Zagrożenie wybuchem pyłu
Proszek generowany podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Poważne obrażenia
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Nie przegrzewaj magnesów
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
To nie jest zabawka
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj poza zasięgiem niepowołanych osób.
Magnesy są kruche
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Niebezpieczeństwo dla rozruszników
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
