MW 45x35 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010074
GTIN/EAN: 5906301810735
Średnica Ø
45 mm [±0,1 mm]
Wysokość
35 mm [±0,1 mm]
Waga
417.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
68.98 kg / 676.73 N
Indukcja magnetyczna
521.39 mT / 5214 Gs
Powłoka
[NiCuNi] nikiel
180.10 ZŁ z VAT / szt. + cena za transport
146.42 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie napisz przez
formularz zapytania
na stronie kontakt.
Masę i kształt magnesu neodymowego skontrolujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne produktu - MW 45x35 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x35 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010074 |
| GTIN/EAN | 5906301810735 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 35 mm [±0,1 mm] |
| Waga | 417.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 68.98 kg / 676.73 N |
| Indukcja magnetyczna ~ ? | 521.39 mT / 5214 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Niniejsze informacje są wynik symulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 45x35 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5213 Gs
521.3 mT
|
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
krytyczny poziom |
| 1 mm |
4982 Gs
498.2 mT
|
63.01 kg / 138.91 lbs
63010.2 g / 618.1 N
|
krytyczny poziom |
| 2 mm |
4748 Gs
474.8 mT
|
57.23 kg / 126.18 lbs
57234.3 g / 561.5 N
|
krytyczny poziom |
| 3 mm |
4516 Gs
451.6 mT
|
51.76 kg / 114.10 lbs
51756.9 g / 507.7 N
|
krytyczny poziom |
| 5 mm |
4059 Gs
405.9 mT
|
41.82 kg / 92.19 lbs
41816.3 g / 410.2 N
|
krytyczny poziom |
| 10 mm |
3027 Gs
302.7 mT
|
23.26 kg / 51.29 lbs
23264.1 g / 228.2 N
|
krytyczny poziom |
| 15 mm |
2215 Gs
221.5 mT
|
12.45 kg / 27.45 lbs
12451.1 g / 122.1 N
|
krytyczny poziom |
| 20 mm |
1619 Gs
161.9 mT
|
6.66 kg / 14.67 lbs
6656.2 g / 65.3 N
|
średnie ryzyko |
| 30 mm |
899 Gs
89.9 mT
|
2.05 kg / 4.52 lbs
2051.1 g / 20.1 N
|
średnie ryzyko |
| 50 mm |
340 Gs
34.0 mT
|
0.29 kg / 0.65 lbs
292.8 g / 2.9 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 45x35 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.80 kg / 30.41 lbs
13796.0 g / 135.3 N
|
| 1 mm | Stal (~0.2) |
12.60 kg / 27.78 lbs
12602.0 g / 123.6 N
|
| 2 mm | Stal (~0.2) |
11.45 kg / 25.23 lbs
11446.0 g / 112.3 N
|
| 3 mm | Stal (~0.2) |
10.35 kg / 22.82 lbs
10352.0 g / 101.6 N
|
| 5 mm | Stal (~0.2) |
8.36 kg / 18.44 lbs
8364.0 g / 82.1 N
|
| 10 mm | Stal (~0.2) |
4.65 kg / 10.26 lbs
4652.0 g / 45.6 N
|
| 15 mm | Stal (~0.2) |
2.49 kg / 5.49 lbs
2490.0 g / 24.4 N
|
| 20 mm | Stal (~0.2) |
1.33 kg / 2.94 lbs
1332.0 g / 13.1 N
|
| 30 mm | Stal (~0.2) |
0.41 kg / 0.90 lbs
410.0 g / 4.0 N
|
| 50 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 45x35 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.69 kg / 45.62 lbs
20694.0 g / 203.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.80 kg / 30.41 lbs
13796.0 g / 135.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.90 kg / 15.21 lbs
6898.0 g / 67.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
34.49 kg / 76.04 lbs
34490.0 g / 338.3 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 45x35 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.30 kg / 5.07 lbs
2299.3 g / 22.6 N
|
| 1 mm |
|
5.75 kg / 12.67 lbs
5748.3 g / 56.4 N
|
| 2 mm |
|
11.50 kg / 25.35 lbs
11496.7 g / 112.8 N
|
| 3 mm |
|
17.25 kg / 38.02 lbs
17245.0 g / 169.2 N
|
| 5 mm |
|
28.74 kg / 63.36 lbs
28741.7 g / 282.0 N
|
| 10 mm |
|
57.48 kg / 126.73 lbs
57483.3 g / 563.9 N
|
| 11 mm |
|
63.23 kg / 139.40 lbs
63231.7 g / 620.3 N
|
| 12 mm |
|
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 45x35 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
68.98 kg / 152.07 lbs
68980.0 g / 676.7 N
|
OK |
| 40 °C | -2.2% |
67.46 kg / 148.73 lbs
67462.4 g / 661.8 N
|
OK |
| 60 °C | -4.4% |
65.94 kg / 145.38 lbs
65944.9 g / 646.9 N
|
OK |
| 80 °C | -6.6% |
64.43 kg / 142.04 lbs
64427.3 g / 632.0 N
|
|
| 100 °C | -28.8% |
49.11 kg / 108.28 lbs
49113.8 g / 481.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 45x35 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
266.45 kg / 587.43 lbs
5 900 Gs
|
39.97 kg / 88.11 lbs
39968 g / 392.1 N
|
N/A |
| 1 mm |
254.93 kg / 562.03 lbs
10 198 Gs
|
38.24 kg / 84.30 lbs
38240 g / 375.1 N
|
229.44 kg / 505.82 lbs
~0 Gs
|
| 2 mm |
243.39 kg / 536.59 lbs
9 965 Gs
|
36.51 kg / 80.49 lbs
36509 g / 358.2 N
|
219.05 kg / 482.93 lbs
~0 Gs
|
| 3 mm |
232.10 kg / 511.70 lbs
9 731 Gs
|
34.82 kg / 76.76 lbs
34816 g / 341.5 N
|
208.89 kg / 460.53 lbs
~0 Gs
|
| 5 mm |
210.35 kg / 463.75 lbs
9 264 Gs
|
31.55 kg / 69.56 lbs
31553 g / 309.5 N
|
189.32 kg / 417.37 lbs
~0 Gs
|
| 10 mm |
161.53 kg / 356.11 lbs
8 118 Gs
|
24.23 kg / 53.42 lbs
24229 g / 237.7 N
|
145.37 kg / 320.49 lbs
~0 Gs
|
| 20 mm |
89.86 kg / 198.12 lbs
6 055 Gs
|
13.48 kg / 29.72 lbs
13480 g / 132.2 N
|
80.88 kg / 178.30 lbs
~0 Gs
|
| 50 mm |
14.04 kg / 30.96 lbs
2 394 Gs
|
2.11 kg / 4.64 lbs
2107 g / 20.7 N
|
12.64 kg / 27.87 lbs
~0 Gs
|
| 60 mm |
7.92 kg / 17.47 lbs
1 798 Gs
|
1.19 kg / 2.62 lbs
1188 g / 11.7 N
|
7.13 kg / 15.72 lbs
~0 Gs
|
| 70 mm |
4.63 kg / 10.21 lbs
1 375 Gs
|
0.69 kg / 1.53 lbs
695 g / 6.8 N
|
4.17 kg / 9.19 lbs
~0 Gs
|
| 80 mm |
2.80 kg / 6.18 lbs
1 070 Gs
|
0.42 kg / 0.93 lbs
421 g / 4.1 N
|
2.52 kg / 5.56 lbs
~0 Gs
|
| 90 mm |
1.75 kg / 3.87 lbs
846 Gs
|
0.26 kg / 0.58 lbs
263 g / 2.6 N
|
1.58 kg / 3.48 lbs
~0 Gs
|
| 100 mm |
1.13 kg / 2.49 lbs
679 Gs
|
0.17 kg / 0.37 lbs
170 g / 1.7 N
|
1.02 kg / 2.24 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 45x35 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 26.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 16.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 12.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 11.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 45x35 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.46 km/h
(4.29 m/s)
|
3.85 J | |
| 30 mm |
22.87 km/h
(6.35 m/s)
|
8.42 J | |
| 50 mm |
29.06 km/h
(8.07 m/s)
|
13.61 J | |
| 100 mm |
41.00 km/h
(11.39 m/s)
|
27.07 J |
Tabela 9: Odporność na korozję
MW 45x35 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 45x35 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 83 921 Mx | 839.2 µWb |
| Współczynnik Pc | 0.78 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 45x35 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 68.98 kg | Standard |
| Woda (dno rzeki) |
78.98 kg
(+10.00 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.78
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, Au, srebro) mają nowoczesny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- o wypolerowanej powierzchni kontaktu
- przy bezpośrednim styku (brak farby)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – występowanie ciała obcego (farba, taśma, powietrze) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig mierzono używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Łamliwość magnesów
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Siła zgniatająca
Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni między dwa przyciągające się elementy.
Zakaz obróbki
Proszek powstający podczas cięcia magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Implanty kardiologiczne
Osoby z stymulatorem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Temperatura pracy
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Tylko dla dorosłych
Zawsze chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Świadome użytkowanie
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Ochrona urządzeń
Nie zbliżaj magnesów do portfela, komputera czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
