MW 45x35 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010074
GTIN/EAN: 5906301810735
Średnica Ø
45 mm [±0,1 mm]
Wysokość
35 mm [±0,1 mm]
Waga
417.49 g
Kierunek magnesowania
↑ osiowy
Udźwig
68.98 kg / 676.73 N
Indukcja magnetyczna
521.39 mT / 5214 Gs
Powłoka
[NiCuNi] nikiel
180.10 ZŁ z VAT / szt. + cena za transport
146.42 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz wątpliwości?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość korzystając z
formularz kontaktowy
na stronie kontakt.
Masę i formę magnesu przetestujesz dzięki naszemu
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MW 45x35 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 45x35 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010074 |
| GTIN/EAN | 5906301810735 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 35 mm [±0,1 mm] |
| Waga | 417.49 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 68.98 kg / 676.73 N |
| Indukcja magnetyczna ~ ? | 521.39 mT / 5214 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe dane stanowią bezpośredni efekt symulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
MW 45x35 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5213 Gs
521.3 mT
|
68.98 kg / 68980.0 g
676.7 N
|
krytyczny poziom |
| 1 mm |
4982 Gs
498.2 mT
|
63.01 kg / 63010.2 g
618.1 N
|
krytyczny poziom |
| 2 mm |
4748 Gs
474.8 mT
|
57.23 kg / 57234.3 g
561.5 N
|
krytyczny poziom |
| 3 mm |
4516 Gs
451.6 mT
|
51.76 kg / 51756.9 g
507.7 N
|
krytyczny poziom |
| 5 mm |
4059 Gs
405.9 mT
|
41.82 kg / 41816.3 g
410.2 N
|
krytyczny poziom |
| 10 mm |
3027 Gs
302.7 mT
|
23.26 kg / 23264.1 g
228.2 N
|
krytyczny poziom |
| 15 mm |
2215 Gs
221.5 mT
|
12.45 kg / 12451.1 g
122.1 N
|
krytyczny poziom |
| 20 mm |
1619 Gs
161.9 mT
|
6.66 kg / 6656.2 g
65.3 N
|
uwaga |
| 30 mm |
899 Gs
89.9 mT
|
2.05 kg / 2051.1 g
20.1 N
|
uwaga |
| 50 mm |
340 Gs
34.0 mT
|
0.29 kg / 292.8 g
2.9 N
|
słaby uchwyt |
MW 45x35 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.80 kg / 13796.0 g
135.3 N
|
| 1 mm | Stal (~0.2) |
12.60 kg / 12602.0 g
123.6 N
|
| 2 mm | Stal (~0.2) |
11.45 kg / 11446.0 g
112.3 N
|
| 3 mm | Stal (~0.2) |
10.35 kg / 10352.0 g
101.6 N
|
| 5 mm | Stal (~0.2) |
8.36 kg / 8364.0 g
82.1 N
|
| 10 mm | Stal (~0.2) |
4.65 kg / 4652.0 g
45.6 N
|
| 15 mm | Stal (~0.2) |
2.49 kg / 2490.0 g
24.4 N
|
| 20 mm | Stal (~0.2) |
1.33 kg / 1332.0 g
13.1 N
|
| 30 mm | Stal (~0.2) |
0.41 kg / 410.0 g
4.0 N
|
| 50 mm | Stal (~0.2) |
0.06 kg / 58.0 g
0.6 N
|
MW 45x35 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.69 kg / 20694.0 g
203.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.80 kg / 13796.0 g
135.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.90 kg / 6898.0 g
67.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
34.49 kg / 34490.0 g
338.3 N
|
MW 45x35 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.30 kg / 2299.3 g
22.6 N
|
| 1 mm |
|
5.75 kg / 5748.3 g
56.4 N
|
| 2 mm |
|
11.50 kg / 11496.7 g
112.8 N
|
| 5 mm |
|
28.74 kg / 28741.7 g
282.0 N
|
| 10 mm |
|
57.48 kg / 57483.3 g
563.9 N
|
MW 45x35 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
68.98 kg / 68980.0 g
676.7 N
|
OK |
| 40 °C | -2.2% |
67.46 kg / 67462.4 g
661.8 N
|
OK |
| 60 °C | -4.4% |
65.94 kg / 65944.9 g
646.9 N
|
OK |
| 80 °C | -6.6% |
64.43 kg / 64427.3 g
632.0 N
|
|
| 100 °C | -28.8% |
49.11 kg / 49113.8 g
481.8 N
|
MW 45x35 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
266.45 kg / 266454 g
2613.9 N
5 900 Gs
|
N/A |
| 1 mm |
254.93 kg / 254932 g
2500.9 N
10 198 Gs
|
229.44 kg / 229438 g
2250.8 N
~0 Gs
|
| 2 mm |
243.39 kg / 243394 g
2387.7 N
9 965 Gs
|
219.05 kg / 219055 g
2148.9 N
~0 Gs
|
| 3 mm |
232.10 kg / 232104 g
2276.9 N
9 731 Gs
|
208.89 kg / 208894 g
2049.2 N
~0 Gs
|
| 5 mm |
210.35 kg / 210351 g
2063.5 N
9 264 Gs
|
189.32 kg / 189316 g
1857.2 N
~0 Gs
|
| 10 mm |
161.53 kg / 161527 g
1584.6 N
8 118 Gs
|
145.37 kg / 145374 g
1426.1 N
~0 Gs
|
| 20 mm |
89.86 kg / 89864 g
881.6 N
6 055 Gs
|
80.88 kg / 80878 g
793.4 N
~0 Gs
|
| 50 mm |
14.04 kg / 14044 g
137.8 N
2 394 Gs
|
12.64 kg / 12640 g
124.0 N
~0 Gs
|
MW 45x35 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 26.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 16.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 12.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 11.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.0 cm |
MW 45x35 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.46 km/h
(4.29 m/s)
|
3.85 J | |
| 30 mm |
22.87 km/h
(6.35 m/s)
|
8.42 J | |
| 50 mm |
29.06 km/h
(8.07 m/s)
|
13.61 J | |
| 100 mm |
41.00 km/h
(11.39 m/s)
|
27.07 J |
MW 45x35 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 45x35 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 83 921 Mx | 839.2 µWb |
| Współczynnik Pc | 0.78 | Wysoki (Stabilny) |
MW 45x35 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 68.98 kg | Standard |
| Woda (dno rzeki) |
78.98 kg
(+10.00 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.78
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - uchwyty magnetyczne do poszukiwań
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy zastosowaniu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się równą strukturą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Urządzenia elektroniczne
Unikaj zbliżania magnesów do portfela, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Bezpieczna praca
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Niklowa powłoka a alergia
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Implanty kardiologiczne
Pacjenci z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zatrzymać działanie implantu.
Przegrzanie magnesu
Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Tylko dla dorosłych
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Samozapłon
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
