MW 45x25 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010072
GTIN/EAN: 5906301810711
Średnica Ø
45 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
298.21 g
Kierunek magnesowania
↑ osiowy
Udźwig
67.33 kg / 660.51 N
Indukcja magnetyczna
460.72 mT / 4607 Gs
Powłoka
[NiCuNi] nikiel
101.55 ZŁ z VAT / szt. + cena za transport
82.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo skontaktuj się poprzez
formularz zapytania
na stronie kontakt.
Udźwig oraz wygląd magnesu neodymowego zweryfikujesz w naszym
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MW 45x25 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x25 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010072 |
| GTIN/EAN | 5906301810711 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 298.21 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 67.33 kg / 660.51 N |
| Indukcja magnetyczna ~ ? | 460.72 mT / 4607 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Niniejsze informacje stanowią wynik analizy matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 45x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4606 Gs
460.6 mT
|
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
krytyczny poziom |
| 1 mm |
4413 Gs
441.3 mT
|
61.79 kg / 136.23 lbs
61791.4 g / 606.2 N
|
krytyczny poziom |
| 2 mm |
4214 Gs
421.4 mT
|
56.35 kg / 124.22 lbs
56345.9 g / 552.8 N
|
krytyczny poziom |
| 3 mm |
4014 Gs
401.4 mT
|
51.11 kg / 112.68 lbs
51112.0 g / 501.4 N
|
krytyczny poziom |
| 5 mm |
3615 Gs
361.5 mT
|
41.47 kg / 91.42 lbs
41466.0 g / 406.8 N
|
krytyczny poziom |
| 10 mm |
2697 Gs
269.7 mT
|
23.08 kg / 50.89 lbs
23083.9 g / 226.5 N
|
krytyczny poziom |
| 15 mm |
1965 Gs
196.5 mT
|
12.25 kg / 27.00 lbs
12247.0 g / 120.1 N
|
krytyczny poziom |
| 20 mm |
1426 Gs
142.6 mT
|
6.46 kg / 14.23 lbs
6455.7 g / 63.3 N
|
średnie ryzyko |
| 30 mm |
778 Gs
77.8 mT
|
1.92 kg / 4.24 lbs
1922.5 g / 18.9 N
|
bezpieczny |
| 50 mm |
285 Gs
28.5 mT
|
0.26 kg / 0.57 lbs
257.0 g / 2.5 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MW 45x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.47 kg / 29.69 lbs
13466.0 g / 132.1 N
|
| 1 mm | Stal (~0.2) |
12.36 kg / 27.24 lbs
12358.0 g / 121.2 N
|
| 2 mm | Stal (~0.2) |
11.27 kg / 24.85 lbs
11270.0 g / 110.6 N
|
| 3 mm | Stal (~0.2) |
10.22 kg / 22.54 lbs
10222.0 g / 100.3 N
|
| 5 mm | Stal (~0.2) |
8.29 kg / 18.29 lbs
8294.0 g / 81.4 N
|
| 10 mm | Stal (~0.2) |
4.62 kg / 10.18 lbs
4616.0 g / 45.3 N
|
| 15 mm | Stal (~0.2) |
2.45 kg / 5.40 lbs
2450.0 g / 24.0 N
|
| 20 mm | Stal (~0.2) |
1.29 kg / 2.85 lbs
1292.0 g / 12.7 N
|
| 30 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 50 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
52.0 g / 0.5 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 45x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.20 kg / 44.53 lbs
20199.0 g / 198.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.47 kg / 29.69 lbs
13466.0 g / 132.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.73 kg / 14.84 lbs
6733.0 g / 66.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
33.67 kg / 74.22 lbs
33665.0 g / 330.3 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 45x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.24 kg / 4.95 lbs
2244.3 g / 22.0 N
|
| 1 mm |
|
5.61 kg / 12.37 lbs
5610.8 g / 55.0 N
|
| 2 mm |
|
11.22 kg / 24.74 lbs
11221.7 g / 110.1 N
|
| 3 mm |
|
16.83 kg / 37.11 lbs
16832.5 g / 165.1 N
|
| 5 mm |
|
28.05 kg / 61.85 lbs
28054.2 g / 275.2 N
|
| 10 mm |
|
56.11 kg / 123.70 lbs
56108.3 g / 550.4 N
|
| 11 mm |
|
61.72 kg / 136.07 lbs
61719.2 g / 605.5 N
|
| 12 mm |
|
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 45x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
67.33 kg / 148.44 lbs
67330.0 g / 660.5 N
|
OK |
| 40 °C | -2.2% |
65.85 kg / 145.17 lbs
65848.7 g / 646.0 N
|
OK |
| 60 °C | -4.4% |
64.37 kg / 141.91 lbs
64367.5 g / 631.4 N
|
OK |
| 80 °C | -6.6% |
62.89 kg / 138.64 lbs
62886.2 g / 616.9 N
|
|
| 100 °C | -28.8% |
47.94 kg / 105.69 lbs
47939.0 g / 470.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 45x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
208.06 kg / 458.70 lbs
5 651 Gs
|
31.21 kg / 68.80 lbs
31209 g / 306.2 N
|
N/A |
| 1 mm |
199.55 kg / 439.92 lbs
9 023 Gs
|
29.93 kg / 65.99 lbs
29932 g / 293.6 N
|
179.59 kg / 395.93 lbs
~0 Gs
|
| 2 mm |
190.95 kg / 420.96 lbs
8 826 Gs
|
28.64 kg / 63.14 lbs
28642 g / 281.0 N
|
171.85 kg / 378.87 lbs
~0 Gs
|
| 3 mm |
182.46 kg / 402.26 lbs
8 628 Gs
|
27.37 kg / 60.34 lbs
27369 g / 268.5 N
|
164.22 kg / 362.03 lbs
~0 Gs
|
| 5 mm |
165.94 kg / 365.83 lbs
8 228 Gs
|
24.89 kg / 54.87 lbs
24891 g / 244.2 N
|
149.35 kg / 329.25 lbs
~0 Gs
|
| 10 mm |
128.14 kg / 282.49 lbs
7 230 Gs
|
19.22 kg / 42.37 lbs
19221 g / 188.6 N
|
115.32 kg / 254.24 lbs
~0 Gs
|
| 20 mm |
71.33 kg / 157.26 lbs
5 394 Gs
|
10.70 kg / 23.59 lbs
10700 g / 105.0 N
|
64.20 kg / 141.54 lbs
~0 Gs
|
| 50 mm |
10.72 kg / 23.63 lbs
2 091 Gs
|
1.61 kg / 3.54 lbs
1608 g / 15.8 N
|
9.65 kg / 21.26 lbs
~0 Gs
|
| 60 mm |
5.94 kg / 13.10 lbs
1 557 Gs
|
0.89 kg / 1.96 lbs
891 g / 8.7 N
|
5.35 kg / 11.79 lbs
~0 Gs
|
| 70 mm |
3.41 kg / 7.52 lbs
1 180 Gs
|
0.51 kg / 1.13 lbs
512 g / 5.0 N
|
3.07 kg / 6.77 lbs
~0 Gs
|
| 80 mm |
2.03 kg / 4.48 lbs
910 Gs
|
0.30 kg / 0.67 lbs
305 g / 3.0 N
|
1.83 kg / 4.03 lbs
~0 Gs
|
| 90 mm |
1.25 kg / 2.76 lbs
714 Gs
|
0.19 kg / 0.41 lbs
188 g / 1.8 N
|
1.13 kg / 2.48 lbs
~0 Gs
|
| 100 mm |
0.79 kg / 1.75 lbs
569 Gs
|
0.12 kg / 0.26 lbs
119 g / 1.2 N
|
0.71 kg / 1.58 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 45x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 24.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 19.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 11.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 10.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 45x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.11 km/h
(5.03 m/s)
|
3.77 J | |
| 30 mm |
26.71 km/h
(7.42 m/s)
|
8.21 J | |
| 50 mm |
33.97 km/h
(9.43 m/s)
|
13.27 J | |
| 100 mm |
47.92 km/h
(13.31 m/s)
|
26.42 J |
Tabela 9: Odporność na korozję
MW 45x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 45x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 73 928 Mx | 739.3 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 45x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 67.33 kg | Standard |
| Woda (dno rzeki) |
77.09 kg
(+9.76 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – zbyt cienka blacha nie przyjmuje całego pola, przez co część strumienia marnuje się na drugą stronę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Ryzyko zmiażdżenia
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Smartfony i tablety
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Ostrożność wymagana
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Reakcje alergiczne
Pewna grupa użytkowników posiada uczulenie na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Sugerujemy używanie rękawiczek ochronnych.
Ryzyko połknięcia
Magnesy neodymowe nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Niszczenie danych
Nie przykładaj magnesów do dokumentów, komputera czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Zagrożenie zapłonem
Proszek generowany podczas szlifowania magnesów jest wybuchowy. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
