MW 45x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010070
GTIN/EAN: 5906301810698
Średnica Ø
45 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
178.92 g
Kierunek magnesowania
↑ osiowy
Udźwig
48.55 kg / 476.32 N
Indukcja magnetyczna
343.84 mT / 3438 Gs
Powłoka
[NiCuNi] nikiel
61.84 ZŁ z VAT / szt. + cena za transport
50.28 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie pisz przez
nasz formularz online
w sekcji kontakt.
Właściwości oraz kształt magnesów neodymowych testujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MW 45x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010070 |
| GTIN/EAN | 5906301810698 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 178.92 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 48.55 kg / 476.32 N |
| Indukcja magnetyczna ~ ? | 343.84 mT / 3438 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - parametry techniczne
Poniższe wartości są wynik kalkulacji matematycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 45x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3438 Gs
343.8 mT
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
niebezpieczny! |
| 1 mm |
3318 Gs
331.8 mT
|
45.21 kg / 99.68 lbs
45214.3 g / 443.6 N
|
niebezpieczny! |
| 2 mm |
3189 Gs
318.9 mT
|
41.76 kg / 92.07 lbs
41762.8 g / 409.7 N
|
niebezpieczny! |
| 3 mm |
3054 Gs
305.4 mT
|
38.30 kg / 84.44 lbs
38303.2 g / 375.8 N
|
niebezpieczny! |
| 5 mm |
2774 Gs
277.4 mT
|
31.61 kg / 69.69 lbs
31610.0 g / 310.1 N
|
niebezpieczny! |
| 10 mm |
2090 Gs
209.0 mT
|
17.95 kg / 39.57 lbs
17948.5 g / 176.1 N
|
niebezpieczny! |
| 15 mm |
1521 Gs
152.1 mT
|
9.50 kg / 20.95 lbs
9500.8 g / 93.2 N
|
mocny |
| 20 mm |
1096 Gs
109.6 mT
|
4.94 kg / 10.88 lbs
4936.3 g / 48.4 N
|
mocny |
| 30 mm |
585 Gs
58.5 mT
|
1.41 kg / 3.10 lbs
1407.9 g / 13.8 N
|
niskie ryzyko |
| 50 mm |
205 Gs
20.5 mT
|
0.17 kg / 0.38 lbs
172.6 g / 1.7 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 45x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
9.71 kg / 21.41 lbs
9710.0 g / 95.3 N
|
| 1 mm | Stal (~0.2) |
9.04 kg / 19.93 lbs
9042.0 g / 88.7 N
|
| 2 mm | Stal (~0.2) |
8.35 kg / 18.41 lbs
8352.0 g / 81.9 N
|
| 3 mm | Stal (~0.2) |
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
| 5 mm | Stal (~0.2) |
6.32 kg / 13.94 lbs
6322.0 g / 62.0 N
|
| 10 mm | Stal (~0.2) |
3.59 kg / 7.91 lbs
3590.0 g / 35.2 N
|
| 15 mm | Stal (~0.2) |
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 20 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 30 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 45x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
14.56 kg / 32.11 lbs
14565.0 g / 142.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
9.71 kg / 21.41 lbs
9710.0 g / 95.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.86 kg / 10.70 lbs
4855.0 g / 47.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
24.28 kg / 53.52 lbs
24275.0 g / 238.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 45x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.43 kg / 5.35 lbs
2427.5 g / 23.8 N
|
| 1 mm |
|
6.07 kg / 13.38 lbs
6068.8 g / 59.5 N
|
| 2 mm |
|
12.14 kg / 26.76 lbs
12137.5 g / 119.1 N
|
| 3 mm |
|
18.21 kg / 40.14 lbs
18206.2 g / 178.6 N
|
| 5 mm |
|
30.34 kg / 66.90 lbs
30343.8 g / 297.7 N
|
| 10 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
| 11 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
| 12 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 45x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
OK |
| 40 °C | -2.2% |
47.48 kg / 104.68 lbs
47481.9 g / 465.8 N
|
OK |
| 60 °C | -4.4% |
46.41 kg / 102.32 lbs
46413.8 g / 455.3 N
|
|
| 80 °C | -6.6% |
45.35 kg / 99.97 lbs
45345.7 g / 444.8 N
|
|
| 100 °C | -28.8% |
34.57 kg / 76.21 lbs
34567.6 g / 339.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 45x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
115.89 kg / 255.50 lbs
4 958 Gs
|
17.38 kg / 38.32 lbs
17384 g / 170.5 N
|
N/A |
| 1 mm |
111.99 kg / 246.89 lbs
6 759 Gs
|
16.80 kg / 37.03 lbs
16798 g / 164.8 N
|
100.79 kg / 222.20 lbs
~0 Gs
|
| 2 mm |
107.93 kg / 237.94 lbs
6 636 Gs
|
16.19 kg / 35.69 lbs
16189 g / 158.8 N
|
97.14 kg / 214.15 lbs
~0 Gs
|
| 3 mm |
103.82 kg / 228.89 lbs
6 508 Gs
|
15.57 kg / 34.33 lbs
15573 g / 152.8 N
|
93.44 kg / 206.00 lbs
~0 Gs
|
| 5 mm |
95.55 kg / 210.66 lbs
6 244 Gs
|
14.33 kg / 31.60 lbs
14333 g / 140.6 N
|
86.00 kg / 189.59 lbs
~0 Gs
|
| 10 mm |
75.46 kg / 166.35 lbs
5 548 Gs
|
11.32 kg / 24.95 lbs
11318 g / 111.0 N
|
67.91 kg / 149.72 lbs
~0 Gs
|
| 20 mm |
42.84 kg / 94.46 lbs
4 181 Gs
|
6.43 kg / 14.17 lbs
6427 g / 63.0 N
|
38.56 kg / 85.01 lbs
~0 Gs
|
| 50 mm |
6.20 kg / 13.67 lbs
1 591 Gs
|
0.93 kg / 2.05 lbs
930 g / 9.1 N
|
5.58 kg / 12.31 lbs
~0 Gs
|
| 60 mm |
3.36 kg / 7.41 lbs
1 171 Gs
|
0.50 kg / 1.11 lbs
504 g / 4.9 N
|
3.02 kg / 6.67 lbs
~0 Gs
|
| 70 mm |
1.89 kg / 4.16 lbs
877 Gs
|
0.28 kg / 0.62 lbs
283 g / 2.8 N
|
1.70 kg / 3.74 lbs
~0 Gs
|
| 80 mm |
1.10 kg / 2.42 lbs
669 Gs
|
0.16 kg / 0.36 lbs
165 g / 1.6 N
|
0.99 kg / 2.18 lbs
~0 Gs
|
| 90 mm |
0.66 kg / 1.46 lbs
520 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.60 kg / 1.31 lbs
~0 Gs
|
| 100 mm |
0.41 kg / 0.91 lbs
410 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 45x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 45x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.09 km/h
(5.58 m/s)
|
2.79 J | |
| 30 mm |
29.29 km/h
(8.14 m/s)
|
5.92 J | |
| 50 mm |
37.23 km/h
(10.34 m/s)
|
9.57 J | |
| 100 mm |
52.54 km/h
(14.59 m/s)
|
19.05 J |
Tabela 9: Parametry powłoki (trwałość)
MW 45x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 45x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 57 854 Mx | 578.5 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 45x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 48.55 kg | Standard |
| Woda (dno rzeki) |
55.59 kg
(+7.04 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Kruchość to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią oczyszczoną i gładką
- przy zerowej szczelinie (bez zanieczyszczeń)
- przy pionowym wektorze siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – największą siłę mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Bezpieczna praca przy magnesach neodymowych
Zakłócenia GPS i telefonów
Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Zakaz obróbki
Proszek generowany podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Pole magnetyczne a elektronika
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Przegrzanie magnesu
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
Rozprysk materiału
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Poważne obrażenia
Bloki magnetyczne mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ryzyko połknięcia
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
