MW 45x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010070
GTIN/EAN: 5906301810698
Średnica Ø
45 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
178.92 g
Kierunek magnesowania
↑ osiowy
Udźwig
48.55 kg / 476.32 N
Indukcja magnetyczna
343.84 mT / 3438 Gs
Powłoka
[NiCuNi] nikiel
61.84 ZŁ z VAT / szt. + cena za transport
50.28 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie skontaktuj się poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Udźwig a także kształt magnesów zobaczysz dzięki naszemu
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane - MW 45x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010070 |
| GTIN/EAN | 5906301810698 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 178.92 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 48.55 kg / 476.32 N |
| Indukcja magnetyczna ~ ? | 343.84 mT / 3438 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Niniejsze dane są rezultat symulacji fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 45x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3438 Gs
343.8 mT
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
niebezpieczny! |
| 1 mm |
3318 Gs
331.8 mT
|
45.21 kg / 99.68 lbs
45214.3 g / 443.6 N
|
niebezpieczny! |
| 2 mm |
3189 Gs
318.9 mT
|
41.76 kg / 92.07 lbs
41762.8 g / 409.7 N
|
niebezpieczny! |
| 3 mm |
3054 Gs
305.4 mT
|
38.30 kg / 84.44 lbs
38303.2 g / 375.8 N
|
niebezpieczny! |
| 5 mm |
2774 Gs
277.4 mT
|
31.61 kg / 69.69 lbs
31610.0 g / 310.1 N
|
niebezpieczny! |
| 10 mm |
2090 Gs
209.0 mT
|
17.95 kg / 39.57 lbs
17948.5 g / 176.1 N
|
niebezpieczny! |
| 15 mm |
1521 Gs
152.1 mT
|
9.50 kg / 20.95 lbs
9500.8 g / 93.2 N
|
mocny |
| 20 mm |
1096 Gs
109.6 mT
|
4.94 kg / 10.88 lbs
4936.3 g / 48.4 N
|
mocny |
| 30 mm |
585 Gs
58.5 mT
|
1.41 kg / 3.10 lbs
1407.9 g / 13.8 N
|
niskie ryzyko |
| 50 mm |
205 Gs
20.5 mT
|
0.17 kg / 0.38 lbs
172.6 g / 1.7 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 45x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
9.71 kg / 21.41 lbs
9710.0 g / 95.3 N
|
| 1 mm | Stal (~0.2) |
9.04 kg / 19.93 lbs
9042.0 g / 88.7 N
|
| 2 mm | Stal (~0.2) |
8.35 kg / 18.41 lbs
8352.0 g / 81.9 N
|
| 3 mm | Stal (~0.2) |
7.66 kg / 16.89 lbs
7660.0 g / 75.1 N
|
| 5 mm | Stal (~0.2) |
6.32 kg / 13.94 lbs
6322.0 g / 62.0 N
|
| 10 mm | Stal (~0.2) |
3.59 kg / 7.91 lbs
3590.0 g / 35.2 N
|
| 15 mm | Stal (~0.2) |
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 20 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 30 mm | Stal (~0.2) |
0.28 kg / 0.62 lbs
282.0 g / 2.8 N
|
| 50 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 45x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
14.56 kg / 32.11 lbs
14565.0 g / 142.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
9.71 kg / 21.41 lbs
9710.0 g / 95.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.86 kg / 10.70 lbs
4855.0 g / 47.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
24.28 kg / 53.52 lbs
24275.0 g / 238.1 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 45x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.43 kg / 5.35 lbs
2427.5 g / 23.8 N
|
| 1 mm |
|
6.07 kg / 13.38 lbs
6068.8 g / 59.5 N
|
| 2 mm |
|
12.14 kg / 26.76 lbs
12137.5 g / 119.1 N
|
| 3 mm |
|
18.21 kg / 40.14 lbs
18206.2 g / 178.6 N
|
| 5 mm |
|
30.34 kg / 66.90 lbs
30343.8 g / 297.7 N
|
| 10 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
| 11 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
| 12 mm |
|
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 45x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
48.55 kg / 107.03 lbs
48550.0 g / 476.3 N
|
OK |
| 40 °C | -2.2% |
47.48 kg / 104.68 lbs
47481.9 g / 465.8 N
|
OK |
| 60 °C | -4.4% |
46.41 kg / 102.32 lbs
46413.8 g / 455.3 N
|
|
| 80 °C | -6.6% |
45.35 kg / 99.97 lbs
45345.7 g / 444.8 N
|
|
| 100 °C | -28.8% |
34.57 kg / 76.21 lbs
34567.6 g / 339.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 45x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
115.89 kg / 255.50 lbs
4 958 Gs
|
17.38 kg / 38.32 lbs
17384 g / 170.5 N
|
N/A |
| 1 mm |
111.99 kg / 246.89 lbs
6 759 Gs
|
16.80 kg / 37.03 lbs
16798 g / 164.8 N
|
100.79 kg / 222.20 lbs
~0 Gs
|
| 2 mm |
107.93 kg / 237.94 lbs
6 636 Gs
|
16.19 kg / 35.69 lbs
16189 g / 158.8 N
|
97.14 kg / 214.15 lbs
~0 Gs
|
| 3 mm |
103.82 kg / 228.89 lbs
6 508 Gs
|
15.57 kg / 34.33 lbs
15573 g / 152.8 N
|
93.44 kg / 206.00 lbs
~0 Gs
|
| 5 mm |
95.55 kg / 210.66 lbs
6 244 Gs
|
14.33 kg / 31.60 lbs
14333 g / 140.6 N
|
86.00 kg / 189.59 lbs
~0 Gs
|
| 10 mm |
75.46 kg / 166.35 lbs
5 548 Gs
|
11.32 kg / 24.95 lbs
11318 g / 111.0 N
|
67.91 kg / 149.72 lbs
~0 Gs
|
| 20 mm |
42.84 kg / 94.46 lbs
4 181 Gs
|
6.43 kg / 14.17 lbs
6427 g / 63.0 N
|
38.56 kg / 85.01 lbs
~0 Gs
|
| 50 mm |
6.20 kg / 13.67 lbs
1 591 Gs
|
0.93 kg / 2.05 lbs
930 g / 9.1 N
|
5.58 kg / 12.31 lbs
~0 Gs
|
| 60 mm |
3.36 kg / 7.41 lbs
1 171 Gs
|
0.50 kg / 1.11 lbs
504 g / 4.9 N
|
3.02 kg / 6.67 lbs
~0 Gs
|
| 70 mm |
1.89 kg / 4.16 lbs
877 Gs
|
0.28 kg / 0.62 lbs
283 g / 2.8 N
|
1.70 kg / 3.74 lbs
~0 Gs
|
| 80 mm |
1.10 kg / 2.42 lbs
669 Gs
|
0.16 kg / 0.36 lbs
165 g / 1.6 N
|
0.99 kg / 2.18 lbs
~0 Gs
|
| 90 mm |
0.66 kg / 1.46 lbs
520 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.60 kg / 1.31 lbs
~0 Gs
|
| 100 mm |
0.41 kg / 0.91 lbs
410 Gs
|
0.06 kg / 0.14 lbs
62 g / 0.6 N
|
0.37 kg / 0.82 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 45x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 45x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.09 km/h
(5.58 m/s)
|
2.79 J | |
| 30 mm |
29.29 km/h
(8.14 m/s)
|
5.92 J | |
| 50 mm |
37.23 km/h
(10.34 m/s)
|
9.57 J | |
| 100 mm |
52.54 km/h
(14.59 m/s)
|
19.05 J |
Tabela 9: Odporność na korozję
MW 45x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 45x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 57 854 Mx | 578.5 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 45x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 48.55 kg | Standard |
| Woda (dno rzeki) |
55.59 kg
(+7.04 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią idealnie równą
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (między magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet minimalna przerwa między magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Nadwrażliwość na metale
Niektóre osoby posiada nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może powodować zaczerwienienie skóry. Rekomendujemy noszenie rękawiczek ochronnych.
Maksymalna temperatura
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Uwaga na odpryski
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Zakaz zabawy
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Nie zbliżaj do komputera
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, aparaty słuchowe, czasomierze).
Zasady obsługi
Używaj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Wpływ na zdrowie
Pacjenci z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
Ryzyko pożaru
Proszek generowany podczas obróbki magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
