MW 3x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010065
GTIN: 5906301810643
Średnica Ø
3 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
0.32 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.20 kg / 1.95 N
Indukcja magnetyczna
598.96 mT / 5990 Gs
Powłoka
[NiCuNi] nikiel
0.295 ZŁ z VAT / szt. + cena za transport
0.240 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie wiesz co wybrać?
Zadzwoń do nas
+48 22 499 98 98
alternatywnie zostaw wiadomość za pomocą
formularz zapytania
w sekcji kontakt.
Siłę oraz formę magnesu przetestujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 3x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 3x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010065 |
| GTIN | 5906301810643 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 3 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 0.32 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.20 kg / 1.95 N |
| Indukcja magnetyczna ~ ? | 598.96 mT / 5990 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - parametry techniczne
Poniższe informacje są bezpośredni efekt analizy inżynierskiej. Wartości bazują na modelach dla klasy NdFeB. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
MW 3x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5974 Gs
597.4 mT
|
0.20 kg / 200.0 g
2.0 N
|
słaby uchwyt |
| 1 mm |
2623 Gs
262.3 mT
|
0.04 kg / 38.6 g
0.4 N
|
słaby uchwyt |
| 2 mm |
1134 Gs
113.4 mT
|
0.01 kg / 7.2 g
0.1 N
|
słaby uchwyt |
| 3 mm |
570 Gs
57.0 mT
|
0.00 kg / 1.8 g
0.0 N
|
słaby uchwyt |
| 5 mm |
205 Gs
20.5 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
| 10 mm |
42 Gs
4.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 15 mm |
15 Gs
1.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 20 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 3x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 3x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.06 kg / 60.0 g
0.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.04 kg / 40.0 g
0.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 20.0 g
0.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.10 kg / 100.0 g
1.0 N
|
MW 3x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 20.0 g
0.2 N
|
| 1 mm |
|
0.05 kg / 50.0 g
0.5 N
|
| 2 mm |
|
0.10 kg / 100.0 g
1.0 N
|
| 5 mm |
|
0.20 kg / 200.0 g
2.0 N
|
| 10 mm |
|
0.20 kg / 200.0 g
2.0 N
|
MW 3x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.20 kg / 200.0 g
2.0 N
|
OK |
| 40 °C | -2.2% |
0.20 kg / 195.6 g
1.9 N
|
OK |
| 60 °C | -4.4% |
0.19 kg / 191.2 g
1.9 N
|
OK |
| 80 °C | -6.6% |
0.19 kg / 186.8 g
1.8 N
|
|
| 100 °C | -28.8% |
0.14 kg / 142.4 g
1.4 N
|
MW 3x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.56 kg / 1555 g
15.3 N
6 111 Gs
|
N/A |
| 1 mm |
0.73 kg / 726 g
7.1 N
8 161 Gs
|
0.65 kg / 653 g
6.4 N
~0 Gs
|
| 2 mm |
0.30 kg / 300 g
2.9 N
5 246 Gs
|
0.27 kg / 270 g
2.6 N
~0 Gs
|
| 3 mm |
0.13 kg / 125 g
1.2 N
3 391 Gs
|
0.11 kg / 113 g
1.1 N
~0 Gs
|
| 5 mm |
0.03 kg / 27 g
0.3 N
1 578 Gs
|
0.02 kg / 24 g
0.2 N
~0 Gs
|
| 10 mm |
0.00 kg / 2 g
0.0 N
409 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
83 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
8 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 3x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 3x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.21 km/h
(7.00 m/s)
|
0.01 J | |
| 30 mm |
43.67 km/h
(12.13 m/s)
|
0.02 J | |
| 50 mm |
56.38 km/h
(15.66 m/s)
|
0.04 J | |
| 100 mm |
79.73 km/h
(22.15 m/s)
|
0.08 J |
MW 3x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 3x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 470 Mx | 4.7 µWb |
| Współczynnik Pc | 1.21 | Wysoki (Stabilny) |
MW 3x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.20 kg | Standard |
| Woda (dno rzeki) |
0.23 kg
(+0.03 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Zobacz też inne produkty
UMP 75x25 [M10x3] GW F200 PLATINIUM / N52 - uchwyty magnetyczne do poszukiwań
Zalety i wady magnesów z neodymu NdFeB.
Warto zwrócić uwagę, że obok wysokiej mocy, produkty te cechują się następującymi zaletami:
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Maksymalna moc trzymania magnesu – co ma na to wpływ?
Wartość udźwigu podana w specyfikacji odnosi się do wartości maksymalnej, którą uzyskano w środowisku optymalnym, a mianowicie:
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- z powierzchnią wolną od rys
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia pokojowej
Determinanty praktycznego udźwigu magnesu
Na skuteczność trzymania wpływają parametry środowiska pracy, takie jak (od priorytetowych):
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
* Udźwig określano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Ogromna siła
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Ochrona oczu
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Alergia na nikiel
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Ochrona dłoni
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.
Uwaga: zadławienie
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Nie przegrzewaj magnesów
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Zagrożenie dla nawigacji
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i nawigacji.
Zachowaj ostrożność!
Więcej informacji o zagrożeniach w artykule: Niebezpieczne magnesy neodymowe.
