MW 3x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010063
GTIN/EAN: 5906301810629
Średnica Ø
3 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.05 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.21 kg / 2.10 N
Indukcja magnetyczna
342.82 mT / 3428 Gs
Powłoka
[NiCuNi] nikiel
0.1353 ZŁ z VAT / szt. + cena za transport
0.1100 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz
na naszej stronie.
Parametry i formę magnesów testujesz dzięki naszemu
kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane produktu - MW 3x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 3x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010063 |
| GTIN/EAN | 5906301810629 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 3 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.05 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.21 kg / 2.10 N |
| Indukcja magnetyczna ~ ? | 342.82 mT / 3428 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Przedstawione dane są bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 3x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3422 Gs
342.2 mT
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
słaby uchwyt |
| 1 mm |
1521 Gs
152.1 mT
|
0.04 kg / 0.09 lbs
41.5 g / 0.4 N
|
słaby uchwyt |
| 2 mm |
585 Gs
58.5 mT
|
0.01 kg / 0.01 lbs
6.1 g / 0.1 N
|
słaby uchwyt |
| 3 mm |
260 Gs
26.0 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
słaby uchwyt |
| 5 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 10 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 3x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 3x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.06 kg / 0.14 lbs
63.0 g / 0.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.11 kg / 0.23 lbs
105.0 g / 1.0 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 3x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
|
| 1 mm |
|
0.05 kg / 0.12 lbs
52.5 g / 0.5 N
|
| 2 mm |
|
0.11 kg / 0.23 lbs
105.0 g / 1.0 N
|
| 3 mm |
|
0.16 kg / 0.35 lbs
157.5 g / 1.5 N
|
| 5 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 10 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 11 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 12 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 3x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
OK |
| 40 °C | -2.2% |
0.21 kg / 0.45 lbs
205.4 g / 2.0 N
|
OK |
| 60 °C | -4.4% |
0.20 kg / 0.44 lbs
200.8 g / 2.0 N
|
|
| 80 °C | -6.6% |
0.20 kg / 0.43 lbs
196.1 g / 1.9 N
|
|
| 100 °C | -28.8% |
0.15 kg / 0.33 lbs
149.5 g / 1.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 3x1 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.51 kg / 1.12 lbs
4 928 Gs
|
0.08 kg / 0.17 lbs
77 g / 0.8 N
|
N/A |
| 1 mm |
0.26 kg / 0.56 lbs
4 847 Gs
|
0.04 kg / 0.08 lbs
38 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 2 mm |
0.10 kg / 0.22 lbs
3 042 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 3 mm |
0.04 kg / 0.08 lbs
1 865 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.08 lbs
~0 Gs
|
| 5 mm |
0.01 kg / 0.01 lbs
764 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
153 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 3x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 1.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 1.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 3x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
65.36 km/h
(18.16 m/s)
|
0.01 J | |
| 30 mm |
113.21 km/h
(31.45 m/s)
|
0.02 J | |
| 50 mm |
146.15 km/h
(40.60 m/s)
|
0.04 J | |
| 100 mm |
206.68 km/h
(57.41 m/s)
|
0.08 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 3x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 3x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 257 Mx | 2.6 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 3x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.21 kg | Standard |
| Woda (dno rzeki) |
0.24 kg
(+0.03 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) mają nowoczesny, błyszczący wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem podłoża ze miękkiej stali, działającej jako element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- z powierzchnią oczyszczoną i gładką
- przy całkowitym braku odstępu (bez powłok)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig określano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Maksymalna temperatura
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Chronić przed dziećmi
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Nie lekceważ mocy
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Implanty medyczne
Pacjenci z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Niklowa powłoka a alergia
Część populacji ma nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać wysypkę. Wskazane jest stosowanie rękawiczek ochronnych.
Zagrożenie wybuchem pyłu
Proszek powstający podczas cięcia magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Elektronika precyzyjna
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Karty i dyski
Potężne pole magnetyczne może skasować dane na kartach płatniczych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
