MW 3x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010063
GTIN/EAN: 5906301810629
Średnica Ø
3 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.05 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.21 kg / 2.10 N
Indukcja magnetyczna
342.82 mT / 3428 Gs
Powłoka
[NiCuNi] nikiel
0.1353 ZŁ z VAT / szt. + cena za transport
0.1100 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Zadzwoń do nas
+48 888 99 98 98
albo skontaktuj się poprzez
formularz zgłoszeniowy
na naszej stronie.
Masę i kształt elementów magnetycznych skontrolujesz w naszym
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
MW 3x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 3x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010063 |
| GTIN/EAN | 5906301810629 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 3 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.05 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.21 kg / 2.10 N |
| Indukcja magnetyczna ~ ? | 342.82 mT / 3428 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu neodymowego - dane
Przedstawione dane są bezpośredni efekt symulacji matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MW 3x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3422 Gs
342.2 mT
|
0.21 kg / 210.0 g
2.1 N
|
bezpieczny |
| 1 mm |
1521 Gs
152.1 mT
|
0.04 kg / 41.5 g
0.4 N
|
bezpieczny |
| 2 mm |
585 Gs
58.5 mT
|
0.01 kg / 6.1 g
0.1 N
|
bezpieczny |
| 3 mm |
260 Gs
26.0 mT
|
0.00 kg / 1.2 g
0.0 N
|
bezpieczny |
| 5 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 10 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 15 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 30 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 3x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.04 kg / 42.0 g
0.4 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 3x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.06 kg / 63.0 g
0.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.04 kg / 42.0 g
0.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 21.0 g
0.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.11 kg / 105.0 g
1.0 N
|
MW 3x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 21.0 g
0.2 N
|
| 1 mm |
|
0.05 kg / 52.5 g
0.5 N
|
| 2 mm |
|
0.11 kg / 105.0 g
1.0 N
|
| 5 mm |
|
0.21 kg / 210.0 g
2.1 N
|
| 10 mm |
|
0.21 kg / 210.0 g
2.1 N
|
MW 3x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.21 kg / 210.0 g
2.1 N
|
OK |
| 40 °C | -2.2% |
0.21 kg / 205.4 g
2.0 N
|
OK |
| 60 °C | -4.4% |
0.20 kg / 200.8 g
2.0 N
|
|
| 80 °C | -6.6% |
0.20 kg / 196.1 g
1.9 N
|
|
| 100 °C | -28.8% |
0.15 kg / 149.5 g
1.5 N
|
MW 3x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.51 kg / 510 g
5.0 N
4 928 Gs
|
N/A |
| 1 mm |
0.26 kg / 256 g
2.5 N
4 847 Gs
|
0.23 kg / 230 g
2.3 N
~0 Gs
|
| 2 mm |
0.10 kg / 101 g
1.0 N
3 042 Gs
|
0.09 kg / 91 g
0.9 N
~0 Gs
|
| 3 mm |
0.04 kg / 38 g
0.4 N
1 865 Gs
|
0.03 kg / 34 g
0.3 N
~0 Gs
|
| 5 mm |
0.01 kg / 6 g
0.1 N
764 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 10 mm |
0.00 kg / 0 g
0.0 N
153 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
23 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
2 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 3x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 1.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 1.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 1.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 3x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
65.36 km/h
(18.16 m/s)
|
0.01 J | |
| 30 mm |
113.21 km/h
(31.45 m/s)
|
0.02 J | |
| 50 mm |
146.15 km/h
(40.60 m/s)
|
0.04 J | |
| 100 mm |
206.68 km/h
(57.41 m/s)
|
0.08 J |
MW 3x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 3x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 257 Mx | 2.6 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
MW 3x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.21 kg | Standard |
| Woda (dno rzeki) |
0.24 kg
(+0.03 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Minusy
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- z użyciem płyty ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną oczyszczoną i gładką
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – za chuda blacha powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig określano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.
Zasady obsługi
Używaj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do portfela, komputera czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Interferencja magnetyczna
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Zakaz zabawy
Zawsze chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
