MW 38x3.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010062
GTIN/EAN: 5906301810612
Średnica Ø
38 mm [±0,1 mm]
Wysokość
3.5 mm [±0,1 mm]
Waga
29.77 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.09 kg / 49.91 N
Indukcja magnetyczna
112.31 mT / 1123 Gs
Powłoka
[NiCuNi] nikiel
15.83 ZŁ z VAT / szt. + cena za transport
12.87 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo daj znać przez
formularz zapytania
na stronie kontakt.
Właściwości a także budowę magnesu neodymowego testujesz u nas w
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 38x3.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x3.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010062 |
| GTIN/EAN | 5906301810612 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 3.5 mm [±0,1 mm] |
| Waga | 29.77 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.09 kg / 49.91 N |
| Indukcja magnetyczna ~ ? | 112.31 mT / 1123 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Niniejsze informacje stanowią rezultat analizy fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 38x3.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1123 Gs
112.3 mT
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
uwaga |
| 1 mm |
1103 Gs
110.3 mT
|
4.91 kg / 10.82 lbs
4910.1 g / 48.2 N
|
uwaga |
| 2 mm |
1075 Gs
107.5 mT
|
4.66 kg / 10.28 lbs
4663.0 g / 45.7 N
|
uwaga |
| 3 mm |
1040 Gs
104.0 mT
|
4.36 kg / 9.62 lbs
4364.2 g / 42.8 N
|
uwaga |
| 5 mm |
954 Gs
95.4 mT
|
3.67 kg / 8.10 lbs
3673.1 g / 36.0 N
|
uwaga |
| 10 mm |
703 Gs
70.3 mT
|
2.00 kg / 4.40 lbs
1997.1 g / 19.6 N
|
niskie ryzyko |
| 15 mm |
483 Gs
48.3 mT
|
0.94 kg / 2.08 lbs
943.2 g / 9.3 N
|
niskie ryzyko |
| 20 mm |
326 Gs
32.6 mT
|
0.43 kg / 0.95 lbs
429.7 g / 4.2 N
|
niskie ryzyko |
| 30 mm |
155 Gs
15.5 mT
|
0.10 kg / 0.21 lbs
97.1 g / 1.0 N
|
niskie ryzyko |
| 50 mm |
47 Gs
4.7 mT
|
0.01 kg / 0.02 lbs
8.9 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 38x3.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.02 kg / 2.24 lbs
1018.0 g / 10.0 N
|
| 1 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
982.0 g / 9.6 N
|
| 2 mm | Stal (~0.2) |
0.93 kg / 2.05 lbs
932.0 g / 9.1 N
|
| 3 mm | Stal (~0.2) |
0.87 kg / 1.92 lbs
872.0 g / 8.6 N
|
| 5 mm | Stal (~0.2) |
0.73 kg / 1.62 lbs
734.0 g / 7.2 N
|
| 10 mm | Stal (~0.2) |
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 15 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
188.0 g / 1.8 N
|
| 20 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 38x3.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.53 kg / 3.37 lbs
1527.0 g / 15.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.02 kg / 2.24 lbs
1018.0 g / 10.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.51 kg / 1.12 lbs
509.0 g / 5.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.55 kg / 5.61 lbs
2545.0 g / 25.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 38x3.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 1.12 lbs
509.0 g / 5.0 N
|
| 1 mm |
|
1.27 kg / 2.81 lbs
1272.5 g / 12.5 N
|
| 2 mm |
|
2.55 kg / 5.61 lbs
2545.0 g / 25.0 N
|
| 3 mm |
|
3.82 kg / 8.42 lbs
3817.5 g / 37.4 N
|
| 5 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 10 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 11 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
| 12 mm |
|
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 38x3.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.09 kg / 11.22 lbs
5090.0 g / 49.9 N
|
OK |
| 40 °C | -2.2% |
4.98 kg / 10.97 lbs
4978.0 g / 48.8 N
|
OK |
| 60 °C | -4.4% |
4.87 kg / 10.73 lbs
4866.0 g / 47.7 N
|
|
| 80 °C | -6.6% |
4.75 kg / 10.48 lbs
4754.1 g / 46.6 N
|
|
| 100 °C | -28.8% |
3.62 kg / 7.99 lbs
3624.1 g / 35.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 38x3.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.82 kg / 19.44 lbs
2 143 Gs
|
1.32 kg / 2.92 lbs
1323 g / 13.0 N
|
N/A |
| 1 mm |
8.68 kg / 19.13 lbs
2 228 Gs
|
1.30 kg / 2.87 lbs
1302 g / 12.8 N
|
7.81 kg / 17.22 lbs
~0 Gs
|
| 2 mm |
8.51 kg / 18.75 lbs
2 206 Gs
|
1.28 kg / 2.81 lbs
1276 g / 12.5 N
|
7.66 kg / 16.88 lbs
~0 Gs
|
| 3 mm |
8.31 kg / 18.31 lbs
2 180 Gs
|
1.25 kg / 2.75 lbs
1246 g / 12.2 N
|
7.47 kg / 16.48 lbs
~0 Gs
|
| 5 mm |
7.83 kg / 17.26 lbs
2 116 Gs
|
1.17 kg / 2.59 lbs
1174 g / 11.5 N
|
7.05 kg / 15.53 lbs
~0 Gs
|
| 10 mm |
6.36 kg / 14.03 lbs
1 908 Gs
|
0.95 kg / 2.10 lbs
955 g / 9.4 N
|
5.73 kg / 12.63 lbs
~0 Gs
|
| 20 mm |
3.46 kg / 7.63 lbs
1 407 Gs
|
0.52 kg / 1.14 lbs
519 g / 5.1 N
|
3.11 kg / 6.87 lbs
~0 Gs
|
| 50 mm |
0.35 kg / 0.76 lbs
445 Gs
|
0.05 kg / 0.11 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 60 mm |
0.17 kg / 0.37 lbs
310 Gs
|
0.03 kg / 0.06 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 70 mm |
0.09 kg / 0.19 lbs
222 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.10 lbs
163 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.06 lbs
122 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.03 lbs
94 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 38x3.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 38x3.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.10 km/h
(4.47 m/s)
|
0.30 J | |
| 30 mm |
23.11 km/h
(6.42 m/s)
|
0.61 J | |
| 50 mm |
29.52 km/h
(8.20 m/s)
|
1.00 J | |
| 100 mm |
41.70 km/h
(11.58 m/s)
|
2.00 J |
Tabela 9: Parametry powłoki (trwałość)
MW 38x3.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 38x3.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 022 Mx | 170.2 µWb |
| Współczynnik Pc | 0.14 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 38x3.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.09 kg | Standard |
| Woda (dno rzeki) |
5.83 kg
(+0.74 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.14
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (nikiel, Au, srebro) mają estetyczny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z zastosowaniem podłoża ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się brakiem chropowatości
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig mierzono stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Tylko dla dorosłych
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Interferencja medyczna
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić działanie implantu.
Świadome użytkowanie
Używaj magnesy świadomie. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Niklowa powłoka a alergia
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może wywołać zaczerwienienie skóry. Sugerujemy noszenie rękawiczek ochronnych.
Kruchość materiału
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą połamać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni między dwa przyciągające się elementy.
Utrata mocy w cieple
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i udźwig.
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Bezpieczny dystans
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
