MW 38x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010061
GTIN/EAN: 5906301810605
Średnica Ø
38 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
127.59 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.08 kg / 393.18 N
Indukcja magnetyczna
384.07 mT / 3841 Gs
Powłoka
[NiCuNi] nikiel
70.00 ZŁ z VAT / szt. + cena za transport
56.91 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub pisz przez
formularz
na stronie kontakt.
Moc oraz wygląd magnesu obliczysz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne - MW 38x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010061 |
| GTIN/EAN | 5906301810605 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 127.59 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.08 kg / 393.18 N |
| Indukcja magnetyczna ~ ? | 384.07 mT / 3841 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Poniższe wartości są rezultat analizy matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 38x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3840 Gs
384.0 mT
|
40.08 kg / 40080.0 g
393.2 N
|
niebezpieczny! |
| 1 mm |
3668 Gs
366.8 mT
|
36.56 kg / 36563.4 g
358.7 N
|
niebezpieczny! |
| 2 mm |
3485 Gs
348.5 mT
|
33.01 kg / 33011.6 g
323.8 N
|
niebezpieczny! |
| 3 mm |
3297 Gs
329.7 mT
|
29.55 kg / 29545.5 g
289.8 N
|
niebezpieczny! |
| 5 mm |
2917 Gs
291.7 mT
|
23.13 kg / 23128.9 g
226.9 N
|
niebezpieczny! |
| 10 mm |
2049 Gs
204.9 mT
|
11.41 kg / 11406.3 g
111.9 N
|
niebezpieczny! |
| 15 mm |
1396 Gs
139.6 mT
|
5.30 kg / 5297.4 g
52.0 N
|
uwaga |
| 20 mm |
954 Gs
95.4 mT
|
2.47 kg / 2473.1 g
24.3 N
|
uwaga |
| 30 mm |
474 Gs
47.4 mT
|
0.61 kg / 610.3 g
6.0 N
|
niskie ryzyko |
| 50 mm |
155 Gs
15.5 mT
|
0.07 kg / 65.6 g
0.6 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 38x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.02 kg / 8016.0 g
78.6 N
|
| 1 mm | Stal (~0.2) |
7.31 kg / 7312.0 g
71.7 N
|
| 2 mm | Stal (~0.2) |
6.60 kg / 6602.0 g
64.8 N
|
| 3 mm | Stal (~0.2) |
5.91 kg / 5910.0 g
58.0 N
|
| 5 mm | Stal (~0.2) |
4.63 kg / 4626.0 g
45.4 N
|
| 10 mm | Stal (~0.2) |
2.28 kg / 2282.0 g
22.4 N
|
| 15 mm | Stal (~0.2) |
1.06 kg / 1060.0 g
10.4 N
|
| 20 mm | Stal (~0.2) |
0.49 kg / 494.0 g
4.8 N
|
| 30 mm | Stal (~0.2) |
0.12 kg / 122.0 g
1.2 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 38x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.02 kg / 12024.0 g
118.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.02 kg / 8016.0 g
78.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.01 kg / 4008.0 g
39.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.04 kg / 20040.0 g
196.6 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 38x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.00 kg / 2004.0 g
19.7 N
|
| 1 mm |
|
5.01 kg / 5010.0 g
49.1 N
|
| 2 mm |
|
10.02 kg / 10020.0 g
98.3 N
|
| 5 mm |
|
25.05 kg / 25050.0 g
245.7 N
|
| 10 mm |
|
40.08 kg / 40080.0 g
393.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 38x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.08 kg / 40080.0 g
393.2 N
|
OK |
| 40 °C | -2.2% |
39.20 kg / 39198.2 g
384.5 N
|
OK |
| 60 °C | -4.4% |
38.32 kg / 38316.5 g
375.9 N
|
|
| 80 °C | -6.6% |
37.43 kg / 37434.7 g
367.2 N
|
|
| 100 °C | -28.8% |
28.54 kg / 28537.0 g
279.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 38x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
103.10 kg / 103105 g
1011.5 N
5 235 Gs
|
N/A |
| 1 mm |
98.64 kg / 98642 g
967.7 N
7 512 Gs
|
88.78 kg / 88778 g
870.9 N
~0 Gs
|
| 2 mm |
94.06 kg / 94058 g
922.7 N
7 336 Gs
|
84.65 kg / 84653 g
830.4 N
~0 Gs
|
| 3 mm |
89.48 kg / 89475 g
877.8 N
7 155 Gs
|
80.53 kg / 80528 g
790.0 N
~0 Gs
|
| 5 mm |
80.42 kg / 80424 g
789.0 N
6 783 Gs
|
72.38 kg / 72381 g
710.1 N
~0 Gs
|
| 10 mm |
59.50 kg / 59498 g
583.7 N
5 834 Gs
|
53.55 kg / 53549 g
525.3 N
~0 Gs
|
| 20 mm |
29.34 kg / 29342 g
287.8 N
4 097 Gs
|
26.41 kg / 26408 g
259.1 N
~0 Gs
|
| 50 mm |
3.08 kg / 3084 g
30.3 N
1 328 Gs
|
2.78 kg / 2775 g
27.2 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 38x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 38x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.81 km/h
(5.78 m/s)
|
2.13 J | |
| 30 mm |
31.25 km/h
(8.68 m/s)
|
4.81 J | |
| 50 mm |
40.01 km/h
(11.11 m/s)
|
7.88 J | |
| 100 mm |
56.53 km/h
(15.70 m/s)
|
15.73 J |
Tabela 9: Odporność na korozję
MW 38x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 38x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 45 065 Mx | 450.7 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 38x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.08 kg | Standard |
| Woda (dno rzeki) |
45.89 kg
(+5.81 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (nikiel, Au, Ag) mają estetyczny, błyszczący wygląd.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować osłony lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni kontaktu
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina – występowanie jakiejkolwiek warstwy (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Ogromna siła
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Chronić przed dziećmi
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem niepowołanych osób.
Siła zgniatająca
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Limity termiczne
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i udźwig.
Kruchość materiału
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Zagrożenie życia
Osoby z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie implantu.
Reakcje alergiczne
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Uszkodzenia czujników
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Urządzenia elektroniczne
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Zakaz obróbki
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
