MW 38x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010061
GTIN/EAN: 5906301810605
Średnica Ø
38 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
127.59 g
Kierunek magnesowania
↑ osiowy
Udźwig
40.08 kg / 393.18 N
Indukcja magnetyczna
384.07 mT / 3841 Gs
Powłoka
[NiCuNi] nikiel
70.00 ZŁ z VAT / szt. + cena za transport
56.91 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
formularz zapytania
w sekcji kontakt.
Masę i wygląd magnesu zobaczysz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna produktu - MW 38x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010061 |
| GTIN/EAN | 5906301810605 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 127.59 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 40.08 kg / 393.18 N |
| Indukcja magnetyczna ~ ? | 384.07 mT / 3841 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Przedstawione informacje stanowią wynik kalkulacji fizycznej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 38x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3840 Gs
384.0 mT
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
miażdżący |
| 1 mm |
3668 Gs
366.8 mT
|
36.56 kg / 80.61 lbs
36563.4 g / 358.7 N
|
miażdżący |
| 2 mm |
3485 Gs
348.5 mT
|
33.01 kg / 72.78 lbs
33011.6 g / 323.8 N
|
miażdżący |
| 3 mm |
3297 Gs
329.7 mT
|
29.55 kg / 65.14 lbs
29545.5 g / 289.8 N
|
miażdżący |
| 5 mm |
2917 Gs
291.7 mT
|
23.13 kg / 50.99 lbs
23128.9 g / 226.9 N
|
miażdżący |
| 10 mm |
2049 Gs
204.9 mT
|
11.41 kg / 25.15 lbs
11406.3 g / 111.9 N
|
miażdżący |
| 15 mm |
1396 Gs
139.6 mT
|
5.30 kg / 11.68 lbs
5297.4 g / 52.0 N
|
średnie ryzyko |
| 20 mm |
954 Gs
95.4 mT
|
2.47 kg / 5.45 lbs
2473.1 g / 24.3 N
|
średnie ryzyko |
| 30 mm |
474 Gs
47.4 mT
|
0.61 kg / 1.35 lbs
610.3 g / 6.0 N
|
słaby uchwyt |
| 50 mm |
155 Gs
15.5 mT
|
0.07 kg / 0.14 lbs
65.6 g / 0.6 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 38x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
8.02 kg / 17.67 lbs
8016.0 g / 78.6 N
|
| 1 mm | Stal (~0.2) |
7.31 kg / 16.12 lbs
7312.0 g / 71.7 N
|
| 2 mm | Stal (~0.2) |
6.60 kg / 14.55 lbs
6602.0 g / 64.8 N
|
| 3 mm | Stal (~0.2) |
5.91 kg / 13.03 lbs
5910.0 g / 58.0 N
|
| 5 mm | Stal (~0.2) |
4.63 kg / 10.20 lbs
4626.0 g / 45.4 N
|
| 10 mm | Stal (~0.2) |
2.28 kg / 5.03 lbs
2282.0 g / 22.4 N
|
| 15 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1060.0 g / 10.4 N
|
| 20 mm | Stal (~0.2) |
0.49 kg / 1.09 lbs
494.0 g / 4.8 N
|
| 30 mm | Stal (~0.2) |
0.12 kg / 0.27 lbs
122.0 g / 1.2 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 38x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
12.02 kg / 26.51 lbs
12024.0 g / 118.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
8.02 kg / 17.67 lbs
8016.0 g / 78.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
4.01 kg / 8.84 lbs
4008.0 g / 39.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
20.04 kg / 44.18 lbs
20040.0 g / 196.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 38x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.00 kg / 4.42 lbs
2004.0 g / 19.7 N
|
| 1 mm |
|
5.01 kg / 11.05 lbs
5010.0 g / 49.1 N
|
| 2 mm |
|
10.02 kg / 22.09 lbs
10020.0 g / 98.3 N
|
| 3 mm |
|
15.03 kg / 33.14 lbs
15030.0 g / 147.4 N
|
| 5 mm |
|
25.05 kg / 55.23 lbs
25050.0 g / 245.7 N
|
| 10 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
| 11 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
| 12 mm |
|
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 38x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
40.08 kg / 88.36 lbs
40080.0 g / 393.2 N
|
OK |
| 40 °C | -2.2% |
39.20 kg / 86.42 lbs
39198.2 g / 384.5 N
|
OK |
| 60 °C | -4.4% |
38.32 kg / 84.47 lbs
38316.5 g / 375.9 N
|
|
| 80 °C | -6.6% |
37.43 kg / 82.53 lbs
37434.7 g / 367.2 N
|
|
| 100 °C | -28.8% |
28.54 kg / 62.91 lbs
28537.0 g / 279.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 38x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
103.10 kg / 227.31 lbs
5 235 Gs
|
15.47 kg / 34.10 lbs
15466 g / 151.7 N
|
N/A |
| 1 mm |
98.64 kg / 217.47 lbs
7 512 Gs
|
14.80 kg / 32.62 lbs
14796 g / 145.2 N
|
88.78 kg / 195.72 lbs
~0 Gs
|
| 2 mm |
94.06 kg / 207.36 lbs
7 336 Gs
|
14.11 kg / 31.10 lbs
14109 g / 138.4 N
|
84.65 kg / 186.63 lbs
~0 Gs
|
| 3 mm |
89.48 kg / 197.26 lbs
7 155 Gs
|
13.42 kg / 29.59 lbs
13421 g / 131.7 N
|
80.53 kg / 177.53 lbs
~0 Gs
|
| 5 mm |
80.42 kg / 177.30 lbs
6 783 Gs
|
12.06 kg / 26.60 lbs
12064 g / 118.3 N
|
72.38 kg / 159.57 lbs
~0 Gs
|
| 10 mm |
59.50 kg / 131.17 lbs
5 834 Gs
|
8.92 kg / 19.68 lbs
8925 g / 87.6 N
|
53.55 kg / 118.05 lbs
~0 Gs
|
| 20 mm |
29.34 kg / 64.69 lbs
4 097 Gs
|
4.40 kg / 9.70 lbs
4401 g / 43.2 N
|
26.41 kg / 58.22 lbs
~0 Gs
|
| 50 mm |
3.08 kg / 6.80 lbs
1 328 Gs
|
0.46 kg / 1.02 lbs
463 g / 4.5 N
|
2.78 kg / 6.12 lbs
~0 Gs
|
| 60 mm |
1.57 kg / 3.46 lbs
948 Gs
|
0.24 kg / 0.52 lbs
236 g / 2.3 N
|
1.41 kg / 3.12 lbs
~0 Gs
|
| 70 mm |
0.84 kg / 1.85 lbs
694 Gs
|
0.13 kg / 0.28 lbs
126 g / 1.2 N
|
0.76 kg / 1.67 lbs
~0 Gs
|
| 80 mm |
0.47 kg / 1.04 lbs
520 Gs
|
0.07 kg / 0.16 lbs
71 g / 0.7 N
|
0.42 kg / 0.94 lbs
~0 Gs
|
| 90 mm |
0.28 kg / 0.61 lbs
398 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 100 mm |
0.17 kg / 0.37 lbs
311 Gs
|
0.03 kg / 0.06 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 38x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 18.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 8.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 38x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.81 km/h
(5.78 m/s)
|
2.13 J | |
| 30 mm |
31.25 km/h
(8.68 m/s)
|
4.81 J | |
| 50 mm |
40.01 km/h
(11.11 m/s)
|
7.88 J | |
| 100 mm |
56.53 km/h
(15.70 m/s)
|
15.73 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 38x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 38x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 45 065 Mx | 450.7 µWb |
| Współczynnik Pc | 0.50 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 38x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 40.08 kg | Standard |
| Woda (dno rzeki) |
45.89 kg
(+5.81 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek siły oderwania.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.50
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres blisko 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i gładki charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- z powierzchnią oczyszczoną i gładką
- przy bezpośrednim styku (bez powłok)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w neutralnych warunkach termicznych
Praktyczne aspekty udźwigu – czynniki
- Przerwa między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Bezpieczna praca
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Zagrożenie zapłonem
Pył powstający podczas cięcia magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.
Nie dawać dzieciom
Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Maksymalna temperatura
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Reakcje alergiczne
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Wpływ na smartfony
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Implanty medyczne
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić działanie implantu.
Nośniki danych
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).
