MW 33x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010058
GTIN/EAN: 5906301810575
Średnica Ø
33 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
192.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.84 kg / 351.54 N
Indukcja magnetyczna
543.05 mT / 5430 Gs
Powłoka
[NiCuNi] nikiel
52.89 ZŁ z VAT / szt. + cena za transport
43.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie daj znać poprzez
formularz kontaktowy
przez naszą stronę.
Właściwości i wygląd magnesów zobaczysz u nas w
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane - MW 33x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 33x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010058 |
| GTIN/EAN | 5906301810575 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 33 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 192.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.84 kg / 351.54 N |
| Indukcja magnetyczna ~ ? | 543.05 mT / 5430 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Niniejsze dane stanowią rezultat kalkulacji matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 33x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5429 Gs
542.9 mT
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
niebezpieczny! |
| 1 mm |
5098 Gs
509.8 mT
|
31.60 kg / 69.67 lbs
31600.1 g / 310.0 N
|
niebezpieczny! |
| 2 mm |
4765 Gs
476.5 mT
|
27.60 kg / 60.85 lbs
27601.7 g / 270.8 N
|
niebezpieczny! |
| 3 mm |
4436 Gs
443.6 mT
|
23.93 kg / 52.76 lbs
23930.4 g / 234.8 N
|
niebezpieczny! |
| 5 mm |
3810 Gs
381.0 mT
|
17.65 kg / 38.91 lbs
17650.2 g / 173.1 N
|
niebezpieczny! |
| 10 mm |
2518 Gs
251.8 mT
|
7.71 kg / 17.00 lbs
7709.5 g / 75.6 N
|
uwaga |
| 15 mm |
1650 Gs
165.0 mT
|
3.31 kg / 7.30 lbs
3312.1 g / 32.5 N
|
uwaga |
| 20 mm |
1105 Gs
110.5 mT
|
1.49 kg / 3.27 lbs
1485.1 g / 14.6 N
|
bezpieczny |
| 30 mm |
546 Gs
54.6 mT
|
0.36 kg / 0.80 lbs
361.9 g / 3.5 N
|
bezpieczny |
| 50 mm |
184 Gs
18.4 mT
|
0.04 kg / 0.09 lbs
41.4 g / 0.4 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 33x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.17 kg / 15.80 lbs
7168.0 g / 70.3 N
|
| 1 mm | Stal (~0.2) |
6.32 kg / 13.93 lbs
6320.0 g / 62.0 N
|
| 2 mm | Stal (~0.2) |
5.52 kg / 12.17 lbs
5520.0 g / 54.2 N
|
| 3 mm | Stal (~0.2) |
4.79 kg / 10.55 lbs
4786.0 g / 47.0 N
|
| 5 mm | Stal (~0.2) |
3.53 kg / 7.78 lbs
3530.0 g / 34.6 N
|
| 10 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1542.0 g / 15.1 N
|
| 15 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
662.0 g / 6.5 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
298.0 g / 2.9 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
72.0 g / 0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 33x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.75 kg / 23.70 lbs
10752.0 g / 105.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.17 kg / 15.80 lbs
7168.0 g / 70.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.58 kg / 7.90 lbs
3584.0 g / 35.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.92 kg / 39.51 lbs
17920.0 g / 175.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 33x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.79 kg / 3.95 lbs
1792.0 g / 17.6 N
|
| 1 mm |
|
4.48 kg / 9.88 lbs
4480.0 g / 43.9 N
|
| 2 mm |
|
8.96 kg / 19.75 lbs
8960.0 g / 87.9 N
|
| 3 mm |
|
13.44 kg / 29.63 lbs
13440.0 g / 131.8 N
|
| 5 mm |
|
22.40 kg / 49.38 lbs
22400.0 g / 219.7 N
|
| 10 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
| 11 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
| 12 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 33x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
OK |
| 40 °C | -2.2% |
35.05 kg / 77.28 lbs
35051.5 g / 343.9 N
|
OK |
| 60 °C | -4.4% |
34.26 kg / 75.54 lbs
34263.0 g / 336.1 N
|
OK |
| 80 °C | -6.6% |
33.47 kg / 73.80 lbs
33474.6 g / 328.4 N
|
|
| 100 °C | -28.8% |
25.52 kg / 56.26 lbs
25518.1 g / 250.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 33x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
155.43 kg / 342.66 lbs
5 974 Gs
|
23.31 kg / 51.40 lbs
23314 g / 228.7 N
|
N/A |
| 1 mm |
146.19 kg / 322.29 lbs
10 531 Gs
|
21.93 kg / 48.34 lbs
21928 g / 215.1 N
|
131.57 kg / 290.06 lbs
~0 Gs
|
| 2 mm |
137.04 kg / 302.12 lbs
10 196 Gs
|
20.56 kg / 45.32 lbs
20556 g / 201.7 N
|
123.34 kg / 271.91 lbs
~0 Gs
|
| 3 mm |
128.20 kg / 282.64 lbs
9 862 Gs
|
19.23 kg / 42.40 lbs
19230 g / 188.6 N
|
115.38 kg / 254.37 lbs
~0 Gs
|
| 5 mm |
111.55 kg / 245.93 lbs
9 199 Gs
|
16.73 kg / 36.89 lbs
16733 g / 164.2 N
|
100.40 kg / 221.34 lbs
~0 Gs
|
| 10 mm |
76.54 kg / 168.75 lbs
7 620 Gs
|
11.48 kg / 25.31 lbs
11481 g / 112.6 N
|
68.89 kg / 151.87 lbs
~0 Gs
|
| 20 mm |
33.43 kg / 73.71 lbs
5 036 Gs
|
5.02 kg / 11.06 lbs
5015 g / 49.2 N
|
30.09 kg / 66.34 lbs
~0 Gs
|
| 50 mm |
3.08 kg / 6.78 lbs
1 528 Gs
|
0.46 kg / 1.02 lbs
462 g / 4.5 N
|
2.77 kg / 6.11 lbs
~0 Gs
|
| 60 mm |
1.57 kg / 3.46 lbs
1 091 Gs
|
0.24 kg / 0.52 lbs
235 g / 2.3 N
|
1.41 kg / 3.11 lbs
~0 Gs
|
| 70 mm |
0.85 kg / 1.87 lbs
803 Gs
|
0.13 kg / 0.28 lbs
127 g / 1.2 N
|
0.76 kg / 1.69 lbs
~0 Gs
|
| 80 mm |
0.48 kg / 1.07 lbs
606 Gs
|
0.07 kg / 0.16 lbs
73 g / 0.7 N
|
0.44 kg / 0.96 lbs
~0 Gs
|
| 90 mm |
0.29 kg / 0.64 lbs
468 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 100 mm |
0.18 kg / 0.40 lbs
369 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 33x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 33x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.50 km/h
(4.31 m/s)
|
1.78 J | |
| 30 mm |
23.99 km/h
(6.66 m/s)
|
4.27 J | |
| 50 mm |
30.80 km/h
(8.55 m/s)
|
7.04 J | |
| 100 mm |
43.52 km/h
(12.09 m/s)
|
14.06 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 33x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 33x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 47 447 Mx | 474.5 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 33x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.84 kg | Standard |
| Woda (dno rzeki) |
41.04 kg
(+5.20 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi tylko ~1% (wg testów).
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- o przekroju nie mniejszej niż 10 mm
- charakteryzującej się gładkością
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Dystans – występowanie ciała obcego (farba, taśma, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig mierzono stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
To nie jest zabawka
Magnesy neodymowe nie służą do zabawy. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Nie lekceważ mocy
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Limity termiczne
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Kruchość materiału
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Zakaz obróbki
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Zagrożenie fizyczne
Duże magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Niebezpieczeństwo dla rozruszników
Osoby z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
Reakcje alergiczne
Pewna grupa użytkowników ma alergię kontaktową na nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może skutkować wysypkę. Zalecamy używanie rękawiczek ochronnych.
