MW 33x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010058
GTIN/EAN: 5906301810575
Średnica Ø
33 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
192.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.84 kg / 351.54 N
Indukcja magnetyczna
543.05 mT / 5430 Gs
Powłoka
[NiCuNi] nikiel
52.89 ZŁ z VAT / szt. + cena za transport
43.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie pisz korzystając z
formularz zapytania
na stronie kontakt.
Udźwig i budowę magnesów testujesz w naszym
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 33x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 33x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010058 |
| GTIN/EAN | 5906301810575 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 33 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 192.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.84 kg / 351.54 N |
| Indukcja magnetyczna ~ ? | 543.05 mT / 5430 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Przedstawione wartości stanowią wynik kalkulacji matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 33x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5429 Gs
542.9 mT
|
35.84 kg / 35840.0 g
351.6 N
|
miażdżący |
| 1 mm |
5098 Gs
509.8 mT
|
31.60 kg / 31600.1 g
310.0 N
|
miażdżący |
| 2 mm |
4765 Gs
476.5 mT
|
27.60 kg / 27601.7 g
270.8 N
|
miażdżący |
| 3 mm |
4436 Gs
443.6 mT
|
23.93 kg / 23930.4 g
234.8 N
|
miażdżący |
| 5 mm |
3810 Gs
381.0 mT
|
17.65 kg / 17650.2 g
173.1 N
|
miażdżący |
| 10 mm |
2518 Gs
251.8 mT
|
7.71 kg / 7709.5 g
75.6 N
|
średnie ryzyko |
| 15 mm |
1650 Gs
165.0 mT
|
3.31 kg / 3312.1 g
32.5 N
|
średnie ryzyko |
| 20 mm |
1105 Gs
110.5 mT
|
1.49 kg / 1485.1 g
14.6 N
|
słaby uchwyt |
| 30 mm |
546 Gs
54.6 mT
|
0.36 kg / 361.9 g
3.5 N
|
słaby uchwyt |
| 50 mm |
184 Gs
18.4 mT
|
0.04 kg / 41.4 g
0.4 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 33x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.17 kg / 7168.0 g
70.3 N
|
| 1 mm | Stal (~0.2) |
6.32 kg / 6320.0 g
62.0 N
|
| 2 mm | Stal (~0.2) |
5.52 kg / 5520.0 g
54.2 N
|
| 3 mm | Stal (~0.2) |
4.79 kg / 4786.0 g
47.0 N
|
| 5 mm | Stal (~0.2) |
3.53 kg / 3530.0 g
34.6 N
|
| 10 mm | Stal (~0.2) |
1.54 kg / 1542.0 g
15.1 N
|
| 15 mm | Stal (~0.2) |
0.66 kg / 662.0 g
6.5 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 298.0 g
2.9 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 72.0 g
0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 33x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.75 kg / 10752.0 g
105.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.17 kg / 7168.0 g
70.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.58 kg / 3584.0 g
35.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.92 kg / 17920.0 g
175.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 33x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.79 kg / 1792.0 g
17.6 N
|
| 1 mm |
|
4.48 kg / 4480.0 g
43.9 N
|
| 2 mm |
|
8.96 kg / 8960.0 g
87.9 N
|
| 5 mm |
|
22.40 kg / 22400.0 g
219.7 N
|
| 10 mm |
|
35.84 kg / 35840.0 g
351.6 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 33x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.84 kg / 35840.0 g
351.6 N
|
OK |
| 40 °C | -2.2% |
35.05 kg / 35051.5 g
343.9 N
|
OK |
| 60 °C | -4.4% |
34.26 kg / 34263.0 g
336.1 N
|
OK |
| 80 °C | -6.6% |
33.47 kg / 33474.6 g
328.4 N
|
|
| 100 °C | -28.8% |
25.52 kg / 25518.1 g
250.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 33x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
155.43 kg / 155426 g
1524.7 N
5 974 Gs
|
N/A |
| 1 mm |
146.19 kg / 146188 g
1434.1 N
10 531 Gs
|
131.57 kg / 131569 g
1290.7 N
~0 Gs
|
| 2 mm |
137.04 kg / 137039 g
1344.4 N
10 196 Gs
|
123.34 kg / 123335 g
1209.9 N
~0 Gs
|
| 3 mm |
128.20 kg / 128202 g
1257.7 N
9 862 Gs
|
115.38 kg / 115381 g
1131.9 N
~0 Gs
|
| 5 mm |
111.55 kg / 111553 g
1094.3 N
9 199 Gs
|
100.40 kg / 100398 g
984.9 N
~0 Gs
|
| 10 mm |
76.54 kg / 76543 g
750.9 N
7 620 Gs
|
68.89 kg / 68889 g
675.8 N
~0 Gs
|
| 20 mm |
33.43 kg / 33433 g
328.0 N
5 036 Gs
|
30.09 kg / 30090 g
295.2 N
~0 Gs
|
| 50 mm |
3.08 kg / 3077 g
30.2 N
1 528 Gs
|
2.77 kg / 2770 g
27.2 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 33x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 33x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.50 km/h
(4.31 m/s)
|
1.78 J | |
| 30 mm |
23.99 km/h
(6.66 m/s)
|
4.27 J | |
| 50 mm |
30.80 km/h
(8.55 m/s)
|
7.04 J | |
| 100 mm |
43.52 km/h
(12.09 m/s)
|
14.06 J |
Tabela 9: Parametry powłoki (trwałość)
MW 33x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 33x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 47 447 Mx | 474.5 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 33x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.84 kg | Standard |
| Woda (dno rzeki) |
41.04 kg
(+5.20 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Praca w cieple
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki powłoce (NiCuNi, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Najwyższa nośność magnesu – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- o grubości przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- przy całkowitym braku odstępu (brak powłok)
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między magnesem a stalą – nawet ułamek milimetra odległości (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Stale stopowe redukują właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża udźwig.
BHP przy magnesach
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Niklowa powłoka a alergia
Pewna grupa użytkowników ma uczulenie na nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może skutkować wysypkę. Sugerujemy używanie rękawiczek ochronnych.
Temperatura pracy
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem dzieci i zwierząt.
Smartfony i tablety
Silne pole magnetyczne zakłóca funkcjonowanie czujników w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Zagrożenie dla elektroniki
Nie przykładaj magnesów do portfela, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż jesteś w stanie przewidzieć.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Łatwopalność
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
