MW 33x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010058
GTIN/EAN: 5906301810575
Średnica Ø
33 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
192.44 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.84 kg / 351.54 N
Indukcja magnetyczna
543.05 mT / 5430 Gs
Powłoka
[NiCuNi] nikiel
52.89 ZŁ z VAT / szt. + cena za transport
43.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie pisz przez
nasz formularz online
na naszej stronie.
Parametry a także kształt magnesu neodymowego sprawdzisz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Dane - MW 33x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 33x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010058 |
| GTIN/EAN | 5906301810575 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 33 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 192.44 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.84 kg / 351.54 N |
| Indukcja magnetyczna ~ ? | 543.05 mT / 5430 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Poniższe informacje stanowią bezpośredni efekt analizy inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 33x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5429 Gs
542.9 mT
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
niebezpieczny! |
| 1 mm |
5098 Gs
509.8 mT
|
31.60 kg / 69.67 lbs
31600.1 g / 310.0 N
|
niebezpieczny! |
| 2 mm |
4765 Gs
476.5 mT
|
27.60 kg / 60.85 lbs
27601.7 g / 270.8 N
|
niebezpieczny! |
| 3 mm |
4436 Gs
443.6 mT
|
23.93 kg / 52.76 lbs
23930.4 g / 234.8 N
|
niebezpieczny! |
| 5 mm |
3810 Gs
381.0 mT
|
17.65 kg / 38.91 lbs
17650.2 g / 173.1 N
|
niebezpieczny! |
| 10 mm |
2518 Gs
251.8 mT
|
7.71 kg / 17.00 lbs
7709.5 g / 75.6 N
|
mocny |
| 15 mm |
1650 Gs
165.0 mT
|
3.31 kg / 7.30 lbs
3312.1 g / 32.5 N
|
mocny |
| 20 mm |
1105 Gs
110.5 mT
|
1.49 kg / 3.27 lbs
1485.1 g / 14.6 N
|
bezpieczny |
| 30 mm |
546 Gs
54.6 mT
|
0.36 kg / 0.80 lbs
361.9 g / 3.5 N
|
bezpieczny |
| 50 mm |
184 Gs
18.4 mT
|
0.04 kg / 0.09 lbs
41.4 g / 0.4 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 33x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.17 kg / 15.80 lbs
7168.0 g / 70.3 N
|
| 1 mm | Stal (~0.2) |
6.32 kg / 13.93 lbs
6320.0 g / 62.0 N
|
| 2 mm | Stal (~0.2) |
5.52 kg / 12.17 lbs
5520.0 g / 54.2 N
|
| 3 mm | Stal (~0.2) |
4.79 kg / 10.55 lbs
4786.0 g / 47.0 N
|
| 5 mm | Stal (~0.2) |
3.53 kg / 7.78 lbs
3530.0 g / 34.6 N
|
| 10 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1542.0 g / 15.1 N
|
| 15 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
662.0 g / 6.5 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
298.0 g / 2.9 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
72.0 g / 0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 33x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.75 kg / 23.70 lbs
10752.0 g / 105.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.17 kg / 15.80 lbs
7168.0 g / 70.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.58 kg / 7.90 lbs
3584.0 g / 35.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.92 kg / 39.51 lbs
17920.0 g / 175.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 33x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.79 kg / 3.95 lbs
1792.0 g / 17.6 N
|
| 1 mm |
|
4.48 kg / 9.88 lbs
4480.0 g / 43.9 N
|
| 2 mm |
|
8.96 kg / 19.75 lbs
8960.0 g / 87.9 N
|
| 3 mm |
|
13.44 kg / 29.63 lbs
13440.0 g / 131.8 N
|
| 5 mm |
|
22.40 kg / 49.38 lbs
22400.0 g / 219.7 N
|
| 10 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
| 11 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
| 12 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 33x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
OK |
| 40 °C | -2.2% |
35.05 kg / 77.28 lbs
35051.5 g / 343.9 N
|
OK |
| 60 °C | -4.4% |
34.26 kg / 75.54 lbs
34263.0 g / 336.1 N
|
OK |
| 80 °C | -6.6% |
33.47 kg / 73.80 lbs
33474.6 g / 328.4 N
|
|
| 100 °C | -28.8% |
25.52 kg / 56.26 lbs
25518.1 g / 250.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 33x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
155.43 kg / 342.66 lbs
5 974 Gs
|
23.31 kg / 51.40 lbs
23314 g / 228.7 N
|
N/A |
| 1 mm |
146.19 kg / 322.29 lbs
10 531 Gs
|
21.93 kg / 48.34 lbs
21928 g / 215.1 N
|
131.57 kg / 290.06 lbs
~0 Gs
|
| 2 mm |
137.04 kg / 302.12 lbs
10 196 Gs
|
20.56 kg / 45.32 lbs
20556 g / 201.7 N
|
123.34 kg / 271.91 lbs
~0 Gs
|
| 3 mm |
128.20 kg / 282.64 lbs
9 862 Gs
|
19.23 kg / 42.40 lbs
19230 g / 188.6 N
|
115.38 kg / 254.37 lbs
~0 Gs
|
| 5 mm |
111.55 kg / 245.93 lbs
9 199 Gs
|
16.73 kg / 36.89 lbs
16733 g / 164.2 N
|
100.40 kg / 221.34 lbs
~0 Gs
|
| 10 mm |
76.54 kg / 168.75 lbs
7 620 Gs
|
11.48 kg / 25.31 lbs
11481 g / 112.6 N
|
68.89 kg / 151.87 lbs
~0 Gs
|
| 20 mm |
33.43 kg / 73.71 lbs
5 036 Gs
|
5.02 kg / 11.06 lbs
5015 g / 49.2 N
|
30.09 kg / 66.34 lbs
~0 Gs
|
| 50 mm |
3.08 kg / 6.78 lbs
1 528 Gs
|
0.46 kg / 1.02 lbs
462 g / 4.5 N
|
2.77 kg / 6.11 lbs
~0 Gs
|
| 60 mm |
1.57 kg / 3.46 lbs
1 091 Gs
|
0.24 kg / 0.52 lbs
235 g / 2.3 N
|
1.41 kg / 3.11 lbs
~0 Gs
|
| 70 mm |
0.85 kg / 1.87 lbs
803 Gs
|
0.13 kg / 0.28 lbs
127 g / 1.2 N
|
0.76 kg / 1.69 lbs
~0 Gs
|
| 80 mm |
0.48 kg / 1.07 lbs
606 Gs
|
0.07 kg / 0.16 lbs
73 g / 0.7 N
|
0.44 kg / 0.96 lbs
~0 Gs
|
| 90 mm |
0.29 kg / 0.64 lbs
468 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 100 mm |
0.18 kg / 0.40 lbs
369 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 33x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 20.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 12.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 9.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 9.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 33x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
15.50 km/h
(4.31 m/s)
|
1.78 J | |
| 30 mm |
23.99 km/h
(6.66 m/s)
|
4.27 J | |
| 50 mm |
30.80 km/h
(8.55 m/s)
|
7.04 J | |
| 100 mm |
43.52 km/h
(12.09 m/s)
|
14.06 J |
Tabela 9: Odporność na korozję
MW 33x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 33x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 47 447 Mx | 474.5 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 33x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.84 kg | Standard |
| Woda (dno rzeki) |
41.04 kg
(+5.20 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej mocy (wg danych).
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- z wykorzystaniem płyty ze miękkiej stali, działającej jako zwora magnetyczna
- której grubość sięga przynajmniej 10 mm
- z płaszczyzną idealnie równą
- w warunkach idealnego przylegania (metal do metalu)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Determinanty praktycznego udźwigu magnesu
- Dystans (między magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i udźwig.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Dla uczulonych
Część populacji wykazuje alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może skutkować silną reakcję alergiczną. Wskazane jest używanie rękawiczek ochronnych.
Łatwopalność
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Zagrożenie dla elektroniki
Bardzo silne oddziaływanie może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
Uwaga: zadławienie
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.
Zagrożenie fizyczne
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Rozruszniki serca
Pacjenci z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę implantu.
Ryzyko rozmagnesowania
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Wpływ na smartfony
Ważna informacja: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Świadome użytkowanie
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
