MW 28.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010051
GTIN/EAN: 5906301810506
Średnica Ø
28.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
49.2 g
Kierunek magnesowania
→ diametralny
Udźwig
20.74 kg / 203.46 N
Indukcja magnetyczna
352.70 mT / 3527 Gs
Powłoka
[NiCuNi] nikiel
23.99 ZŁ z VAT / szt. + cena za transport
19.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub napisz za pomocą
formularz
na naszej stronie.
Masę a także formę magnesów przetestujesz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MW 28.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 28.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010051 |
| GTIN/EAN | 5906301810506 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 28.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 49.2 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 20.74 kg / 203.46 N |
| Indukcja magnetyczna ~ ? | 352.70 mT / 3527 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Niniejsze dane stanowią rezultat symulacji fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 28.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3526 Gs
352.6 mT
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
krytyczny poziom |
| 1 mm |
3327 Gs
332.7 mT
|
18.47 kg / 40.71 lbs
18466.2 g / 181.2 N
|
krytyczny poziom |
| 2 mm |
3111 Gs
311.1 mT
|
16.14 kg / 35.59 lbs
16142.6 g / 158.4 N
|
krytyczny poziom |
| 3 mm |
2886 Gs
288.6 mT
|
13.90 kg / 30.63 lbs
13895.8 g / 136.3 N
|
krytyczny poziom |
| 5 mm |
2438 Gs
243.8 mT
|
9.91 kg / 21.85 lbs
9912.0 g / 97.2 N
|
uwaga |
| 10 mm |
1497 Gs
149.7 mT
|
3.74 kg / 8.24 lbs
3739.6 g / 36.7 N
|
uwaga |
| 15 mm |
903 Gs
90.3 mT
|
1.36 kg / 3.00 lbs
1359.1 g / 13.3 N
|
bezpieczny |
| 20 mm |
560 Gs
56.0 mT
|
0.52 kg / 1.15 lbs
523.5 g / 5.1 N
|
bezpieczny |
| 30 mm |
245 Gs
24.5 mT
|
0.10 kg / 0.22 lbs
100.4 g / 1.0 N
|
bezpieczny |
| 50 mm |
71 Gs
7.1 mT
|
0.01 kg / 0.02 lbs
8.5 g / 0.1 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 28.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.15 kg / 9.14 lbs
4148.0 g / 40.7 N
|
| 1 mm | Stal (~0.2) |
3.69 kg / 8.14 lbs
3694.0 g / 36.2 N
|
| 2 mm | Stal (~0.2) |
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
| 3 mm | Stal (~0.2) |
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 5 mm | Stal (~0.2) |
1.98 kg / 4.37 lbs
1982.0 g / 19.4 N
|
| 10 mm | Stal (~0.2) |
0.75 kg / 1.65 lbs
748.0 g / 7.3 N
|
| 15 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
272.0 g / 2.7 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 28.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.22 kg / 13.72 lbs
6222.0 g / 61.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.15 kg / 9.14 lbs
4148.0 g / 40.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 4.57 lbs
2074.0 g / 20.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.37 kg / 22.86 lbs
10370.0 g / 101.7 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 28.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.29 lbs
1037.0 g / 10.2 N
|
| 1 mm |
|
2.59 kg / 5.72 lbs
2592.5 g / 25.4 N
|
| 2 mm |
|
5.19 kg / 11.43 lbs
5185.0 g / 50.9 N
|
| 3 mm |
|
7.78 kg / 17.15 lbs
7777.5 g / 76.3 N
|
| 5 mm |
|
12.96 kg / 28.58 lbs
12962.5 g / 127.2 N
|
| 10 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
| 11 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
| 12 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 28.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
OK |
| 40 °C | -2.2% |
20.28 kg / 44.72 lbs
20283.7 g / 199.0 N
|
OK |
| 60 °C | -4.4% |
19.83 kg / 43.71 lbs
19827.4 g / 194.5 N
|
|
| 80 °C | -6.6% |
19.37 kg / 42.71 lbs
19371.2 g / 190.0 N
|
|
| 100 °C | -28.8% |
14.77 kg / 32.56 lbs
14766.9 g / 144.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 28.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
50.29 kg / 110.86 lbs
5 022 Gs
|
7.54 kg / 16.63 lbs
7543 g / 74.0 N
|
N/A |
| 1 mm |
47.58 kg / 104.90 lbs
6 860 Gs
|
7.14 kg / 15.74 lbs
7138 g / 70.0 N
|
42.83 kg / 94.41 lbs
~0 Gs
|
| 2 mm |
44.77 kg / 98.71 lbs
6 655 Gs
|
6.72 kg / 14.81 lbs
6716 g / 65.9 N
|
40.30 kg / 88.84 lbs
~0 Gs
|
| 3 mm |
41.95 kg / 92.48 lbs
6 441 Gs
|
6.29 kg / 13.87 lbs
6292 g / 61.7 N
|
37.75 kg / 83.23 lbs
~0 Gs
|
| 5 mm |
36.38 kg / 80.20 lbs
5 999 Gs
|
5.46 kg / 12.03 lbs
5457 g / 53.5 N
|
32.74 kg / 72.18 lbs
~0 Gs
|
| 10 mm |
24.03 kg / 52.98 lbs
4 876 Gs
|
3.60 kg / 7.95 lbs
3605 g / 35.4 N
|
21.63 kg / 47.69 lbs
~0 Gs
|
| 20 mm |
9.07 kg / 19.99 lbs
2 995 Gs
|
1.36 kg / 3.00 lbs
1360 g / 13.3 N
|
8.16 kg / 17.99 lbs
~0 Gs
|
| 50 mm |
0.53 kg / 1.17 lbs
726 Gs
|
0.08 kg / 0.18 lbs
80 g / 0.8 N
|
0.48 kg / 1.06 lbs
~0 Gs
|
| 60 mm |
0.24 kg / 0.54 lbs
491 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.48 lbs
~0 Gs
|
| 70 mm |
0.12 kg / 0.26 lbs
345 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 80 mm |
0.06 kg / 0.14 lbs
250 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.08 lbs
187 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
143 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 28.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 28.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.92 km/h
(6.37 m/s)
|
1.00 J | |
| 30 mm |
35.97 km/h
(9.99 m/s)
|
2.46 J | |
| 50 mm |
46.31 km/h
(12.86 m/s)
|
4.07 J | |
| 100 mm |
65.48 km/h
(18.19 m/s)
|
8.14 J |
Tabela 9: Parametry powłoki (trwałość)
MW 28.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 28.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 347 Mx | 243.5 µWb |
| Współczynnik Pc | 0.45 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 28.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.74 kg | Standard |
| Woda (dno rzeki) |
23.75 kg
(+3.01 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady spadek mocy wynosi jedynie ~1% (teoretycznie).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po zaawansowaną diagnostykę.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- o przekroju wynoszącej minimum 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (bez farby)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w stabilnej temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (pomiędzy magnesem a metalem), ponieważ nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe zmniejszają właściwości magnetyczne i udźwig.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
BHP przy magnesach
Siła neodymu
Stosuj magnesy świadomie. Ich ogromna siła może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Uwaga na odpryski
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Urazy ciała
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Uczulenie na powłokę
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
To nie jest zabawka
Neodymowe magnesy to nie zabawki. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
