MW 28.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010051
GTIN/EAN: 5906301810506
Średnica Ø
28.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
49.2 g
Kierunek magnesowania
→ diametralny
Udźwig
20.74 kg / 203.46 N
Indukcja magnetyczna
352.70 mT / 3527 Gs
Powłoka
[NiCuNi] nikiel
23.99 ZŁ z VAT / szt. + cena za transport
19.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie napisz za pomocą
nasz formularz online
na stronie kontakt.
Udźwig a także wygląd magnesów neodymowych skontrolujesz dzięki naszemu
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Parametry produktu - MW 28.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 28.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010051 |
| GTIN/EAN | 5906301810506 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 28.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 49.2 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 20.74 kg / 203.46 N |
| Indukcja magnetyczna ~ ? | 352.70 mT / 3527 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Poniższe wartości są bezpośredni efekt analizy fizycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 28.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3526 Gs
352.6 mT
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
niebezpieczny! |
| 1 mm |
3327 Gs
332.7 mT
|
18.47 kg / 40.71 lbs
18466.2 g / 181.2 N
|
niebezpieczny! |
| 2 mm |
3111 Gs
311.1 mT
|
16.14 kg / 35.59 lbs
16142.6 g / 158.4 N
|
niebezpieczny! |
| 3 mm |
2886 Gs
288.6 mT
|
13.90 kg / 30.63 lbs
13895.8 g / 136.3 N
|
niebezpieczny! |
| 5 mm |
2438 Gs
243.8 mT
|
9.91 kg / 21.85 lbs
9912.0 g / 97.2 N
|
średnie ryzyko |
| 10 mm |
1497 Gs
149.7 mT
|
3.74 kg / 8.24 lbs
3739.6 g / 36.7 N
|
średnie ryzyko |
| 15 mm |
903 Gs
90.3 mT
|
1.36 kg / 3.00 lbs
1359.1 g / 13.3 N
|
niskie ryzyko |
| 20 mm |
560 Gs
56.0 mT
|
0.52 kg / 1.15 lbs
523.5 g / 5.1 N
|
niskie ryzyko |
| 30 mm |
245 Gs
24.5 mT
|
0.10 kg / 0.22 lbs
100.4 g / 1.0 N
|
niskie ryzyko |
| 50 mm |
71 Gs
7.1 mT
|
0.01 kg / 0.02 lbs
8.5 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 28.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.15 kg / 9.14 lbs
4148.0 g / 40.7 N
|
| 1 mm | Stal (~0.2) |
3.69 kg / 8.14 lbs
3694.0 g / 36.2 N
|
| 2 mm | Stal (~0.2) |
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
| 3 mm | Stal (~0.2) |
2.78 kg / 6.13 lbs
2780.0 g / 27.3 N
|
| 5 mm | Stal (~0.2) |
1.98 kg / 4.37 lbs
1982.0 g / 19.4 N
|
| 10 mm | Stal (~0.2) |
0.75 kg / 1.65 lbs
748.0 g / 7.3 N
|
| 15 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
272.0 g / 2.7 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 28.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.22 kg / 13.72 lbs
6222.0 g / 61.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.15 kg / 9.14 lbs
4148.0 g / 40.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 4.57 lbs
2074.0 g / 20.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.37 kg / 22.86 lbs
10370.0 g / 101.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 28.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.29 lbs
1037.0 g / 10.2 N
|
| 1 mm |
|
2.59 kg / 5.72 lbs
2592.5 g / 25.4 N
|
| 2 mm |
|
5.19 kg / 11.43 lbs
5185.0 g / 50.9 N
|
| 3 mm |
|
7.78 kg / 17.15 lbs
7777.5 g / 76.3 N
|
| 5 mm |
|
12.96 kg / 28.58 lbs
12962.5 g / 127.2 N
|
| 10 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
| 11 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
| 12 mm |
|
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 28.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.74 kg / 45.72 lbs
20740.0 g / 203.5 N
|
OK |
| 40 °C | -2.2% |
20.28 kg / 44.72 lbs
20283.7 g / 199.0 N
|
OK |
| 60 °C | -4.4% |
19.83 kg / 43.71 lbs
19827.4 g / 194.5 N
|
|
| 80 °C | -6.6% |
19.37 kg / 42.71 lbs
19371.2 g / 190.0 N
|
|
| 100 °C | -28.8% |
14.77 kg / 32.56 lbs
14766.9 g / 144.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 28.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
50.29 kg / 110.86 lbs
5 022 Gs
|
7.54 kg / 16.63 lbs
7543 g / 74.0 N
|
N/A |
| 1 mm |
47.58 kg / 104.90 lbs
6 860 Gs
|
7.14 kg / 15.74 lbs
7138 g / 70.0 N
|
42.83 kg / 94.41 lbs
~0 Gs
|
| 2 mm |
44.77 kg / 98.71 lbs
6 655 Gs
|
6.72 kg / 14.81 lbs
6716 g / 65.9 N
|
40.30 kg / 88.84 lbs
~0 Gs
|
| 3 mm |
41.95 kg / 92.48 lbs
6 441 Gs
|
6.29 kg / 13.87 lbs
6292 g / 61.7 N
|
37.75 kg / 83.23 lbs
~0 Gs
|
| 5 mm |
36.38 kg / 80.20 lbs
5 999 Gs
|
5.46 kg / 12.03 lbs
5457 g / 53.5 N
|
32.74 kg / 72.18 lbs
~0 Gs
|
| 10 mm |
24.03 kg / 52.98 lbs
4 876 Gs
|
3.60 kg / 7.95 lbs
3605 g / 35.4 N
|
21.63 kg / 47.69 lbs
~0 Gs
|
| 20 mm |
9.07 kg / 19.99 lbs
2 995 Gs
|
1.36 kg / 3.00 lbs
1360 g / 13.3 N
|
8.16 kg / 17.99 lbs
~0 Gs
|
| 50 mm |
0.53 kg / 1.17 lbs
726 Gs
|
0.08 kg / 0.18 lbs
80 g / 0.8 N
|
0.48 kg / 1.06 lbs
~0 Gs
|
| 60 mm |
0.24 kg / 0.54 lbs
491 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.48 lbs
~0 Gs
|
| 70 mm |
0.12 kg / 0.26 lbs
345 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 80 mm |
0.06 kg / 0.14 lbs
250 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.08 lbs
187 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
143 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 28.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 28.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.92 km/h
(6.37 m/s)
|
1.00 J | |
| 30 mm |
35.97 km/h
(9.99 m/s)
|
2.46 J | |
| 50 mm |
46.31 km/h
(12.86 m/s)
|
4.07 J | |
| 100 mm |
65.48 km/h
(18.19 m/s)
|
8.14 J |
Tabela 9: Parametry powłoki (trwałość)
MW 28.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 28.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 24 347 Mx | 243.5 µWb |
| Współczynnik Pc | 0.45 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 28.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.74 kg | Standard |
| Woda (dno rzeki) |
23.75 kg
(+3.01 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Dzięki powłoce (nikiel, Au, Ag) mają nowoczesny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (bez powłok)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Wpływ temperatury – gorące środowisko osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig wyznaczano używając gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Nie dawać dzieciom
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Utrata mocy w cieple
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Siła zgniatająca
Bloki magnetyczne mogą zdruzgotać palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa przyciągające się elementy.
Potężne pole
Przed użyciem, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Ochrona oczu
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Niszczenie danych
Ekstremalne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Samozapłon
Pył powstający podczas obróbki magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.
Unikaj kontaktu w przypadku alergii
Niektóre osoby ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może skutkować zaczerwienienie skóry. Wskazane jest noszenie rękawic bezlateksowych.
Uwaga medyczna
Osoby z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
