MW 20x35 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010043
GTIN/EAN: 5906301810421
Średnica Ø
20 mm [±0,1 mm]
Wysokość
35 mm [±0,1 mm]
Waga
82.47 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.58 kg / 93.97 N
Indukcja magnetyczna
595.77 mT / 5958 Gs
Powłoka
[NiCuNi] nikiel
49.52 ZŁ z VAT / szt. + cena za transport
40.26 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie pisz za pomocą
nasz formularz online
na stronie kontakt.
Siłę oraz kształt magnesów neodymowych zweryfikujesz w naszym
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna - MW 20x35 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x35 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010043 |
| GTIN/EAN | 5906301810421 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 35 mm [±0,1 mm] |
| Waga | 82.47 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.58 kg / 93.97 N |
| Indukcja magnetyczna ~ ? | 595.77 mT / 5958 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Poniższe dane stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MW 20x35 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5955 Gs
595.5 mT
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
mocny |
| 1 mm |
5357 Gs
535.7 mT
|
7.75 kg / 17.09 lbs
7751.3 g / 76.0 N
|
mocny |
| 2 mm |
4769 Gs
476.9 mT
|
6.14 kg / 13.55 lbs
6144.2 g / 60.3 N
|
mocny |
| 3 mm |
4214 Gs
421.4 mT
|
4.80 kg / 10.58 lbs
4797.3 g / 47.1 N
|
mocny |
| 5 mm |
3242 Gs
324.2 mT
|
2.84 kg / 6.26 lbs
2839.3 g / 27.9 N
|
mocny |
| 10 mm |
1668 Gs
166.8 mT
|
0.75 kg / 1.66 lbs
751.8 g / 7.4 N
|
słaby uchwyt |
| 15 mm |
921 Gs
92.1 mT
|
0.23 kg / 0.51 lbs
229.1 g / 2.2 N
|
słaby uchwyt |
| 20 mm |
555 Gs
55.5 mT
|
0.08 kg / 0.18 lbs
83.1 g / 0.8 N
|
słaby uchwyt |
| 30 mm |
246 Gs
24.6 mT
|
0.02 kg / 0.04 lbs
16.4 g / 0.2 N
|
słaby uchwyt |
| 50 mm |
78 Gs
7.8 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 20x35 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.92 kg / 4.22 lbs
1916.0 g / 18.8 N
|
| 1 mm | Stal (~0.2) |
1.55 kg / 3.42 lbs
1550.0 g / 15.2 N
|
| 2 mm | Stal (~0.2) |
1.23 kg / 2.71 lbs
1228.0 g / 12.0 N
|
| 3 mm | Stal (~0.2) |
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| 5 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
568.0 g / 5.6 N
|
| 10 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 20x35 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.87 kg / 6.34 lbs
2874.0 g / 28.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.92 kg / 4.22 lbs
1916.0 g / 18.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 20x35 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.96 kg / 2.11 lbs
958.0 g / 9.4 N
|
| 1 mm |
|
2.40 kg / 5.28 lbs
2395.0 g / 23.5 N
|
| 2 mm |
|
4.79 kg / 10.56 lbs
4790.0 g / 47.0 N
|
| 3 mm |
|
7.19 kg / 15.84 lbs
7185.0 g / 70.5 N
|
| 5 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 10 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 11 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
| 12 mm |
|
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 20x35 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.58 kg / 21.12 lbs
9580.0 g / 94.0 N
|
OK |
| 40 °C | -2.2% |
9.37 kg / 20.66 lbs
9369.2 g / 91.9 N
|
OK |
| 60 °C | -4.4% |
9.16 kg / 20.19 lbs
9158.5 g / 89.8 N
|
OK |
| 80 °C | -6.6% |
8.95 kg / 19.73 lbs
8947.7 g / 87.8 N
|
|
| 100 °C | -28.8% |
6.82 kg / 15.04 lbs
6821.0 g / 66.9 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 20x35 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
68.69 kg / 151.44 lbs
6 132 Gs
|
10.30 kg / 22.72 lbs
10304 g / 101.1 N
|
N/A |
| 1 mm |
62.01 kg / 136.70 lbs
11 316 Gs
|
9.30 kg / 20.50 lbs
9301 g / 91.2 N
|
55.81 kg / 123.03 lbs
~0 Gs
|
| 2 mm |
55.58 kg / 122.53 lbs
10 714 Gs
|
8.34 kg / 18.38 lbs
8337 g / 81.8 N
|
50.02 kg / 110.28 lbs
~0 Gs
|
| 3 mm |
49.59 kg / 109.32 lbs
10 120 Gs
|
7.44 kg / 16.40 lbs
7438 g / 73.0 N
|
44.63 kg / 98.39 lbs
~0 Gs
|
| 5 mm |
38.99 kg / 85.96 lbs
8 974 Gs
|
5.85 kg / 12.89 lbs
5849 g / 57.4 N
|
35.09 kg / 77.37 lbs
~0 Gs
|
| 10 mm |
20.36 kg / 44.88 lbs
6 484 Gs
|
3.05 kg / 6.73 lbs
3054 g / 30.0 N
|
18.32 kg / 40.40 lbs
~0 Gs
|
| 20 mm |
5.39 kg / 11.88 lbs
3 337 Gs
|
0.81 kg / 1.78 lbs
809 g / 7.9 N
|
4.85 kg / 10.70 lbs
~0 Gs
|
| 50 mm |
0.25 kg / 0.55 lbs
718 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.50 lbs
~0 Gs
|
| 60 mm |
0.12 kg / 0.26 lbs
492 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 70 mm |
0.06 kg / 0.13 lbs
352 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.07 lbs
261 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
200 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
156 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 20x35 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 20x35 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
11.39 km/h
(3.16 m/s)
|
0.41 J | |
| 30 mm |
18.85 km/h
(5.24 m/s)
|
1.13 J | |
| 50 mm |
24.31 km/h
(6.75 m/s)
|
1.88 J | |
| 100 mm |
34.37 km/h
(9.55 m/s)
|
3.76 J |
Tabela 9: Odporność na korozję
MW 20x35 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 20x35 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 408 Mx | 204.1 µWb |
| Współczynnik Pc | 1.16 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 20x35 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.58 kg | Standard |
| Woda (dno rzeki) |
10.97 kg
(+1.39 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje udźwig.
Środki ostrożności podczas pracy przy magnesach neodymowych
Niebezpieczeństwo przytrzaśnięcia
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Ryzyko pożaru
Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Świadome użytkowanie
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Kruchość materiału
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Trzymaj z dala od elektroniki
Pamiętaj: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Nadwrażliwość na metale
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Nie zbliżaj do komputera
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Uwaga medyczna
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zakaz zabawy
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
