MW 20x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010041
GTIN: 5906301810407
Średnica Ø
20 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
4.71 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.63 kg / 16.02 N
Indukcja magnetyczna
121.57 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
2.08 ZŁ z VAT / szt. + cena za transport
1.690 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń już teraz
+48 888 99 98 98
albo skontaktuj się korzystając z
formularz zapytania
w sekcji kontakt.
Masę oraz formę magnesu przetestujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 20x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 20x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010041 |
| GTIN | 5906301810407 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 4.71 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.63 kg / 16.02 N |
| Indukcja magnetyczna ~ ? | 121.57 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - dane
Przedstawione wartości stanowią wynik kalkulacji inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
MW 20x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
1.63 kg / 1630.0 g
16.0 N
|
słaby uchwyt |
| 1 mm |
1165 Gs
116.5 mT
|
1.50 kg / 1496.3 g
14.7 N
|
słaby uchwyt |
| 2 mm |
1087 Gs
108.7 mT
|
1.30 kg / 1302.7 g
12.8 N
|
słaby uchwyt |
| 3 mm |
991 Gs
99.1 mT
|
1.08 kg / 1083.7 g
10.6 N
|
słaby uchwyt |
| 5 mm |
783 Gs
78.3 mT
|
0.68 kg / 675.9 g
6.6 N
|
słaby uchwyt |
| 10 mm |
379 Gs
37.9 mT
|
0.16 kg / 158.4 g
1.6 N
|
słaby uchwyt |
| 15 mm |
185 Gs
18.5 mT
|
0.04 kg / 37.9 g
0.4 N
|
słaby uchwyt |
| 20 mm |
99 Gs
9.9 mT
|
0.01 kg / 10.8 g
0.1 N
|
słaby uchwyt |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 1.4 g
0.0 N
|
słaby uchwyt |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
MW 20x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.33 kg / 326.0 g
3.2 N
|
| 1 mm | Stal (~0.2) |
0.30 kg / 300.0 g
2.9 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 216.0 g
2.1 N
|
| 5 mm | Stal (~0.2) |
0.14 kg / 136.0 g
1.3 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 20x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.49 kg / 489.0 g
4.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.33 kg / 326.0 g
3.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 163.0 g
1.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.82 kg / 815.0 g
8.0 N
|
MW 20x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 163.0 g
1.6 N
|
| 1 mm |
|
0.41 kg / 407.5 g
4.0 N
|
| 2 mm |
|
0.82 kg / 815.0 g
8.0 N
|
| 5 mm |
|
1.63 kg / 1630.0 g
16.0 N
|
| 10 mm |
|
1.63 kg / 1630.0 g
16.0 N
|
MW 20x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.63 kg / 1630.0 g
16.0 N
|
OK |
| 40 °C | -2.2% |
1.59 kg / 1594.1 g
15.6 N
|
OK |
| 60 °C | -4.4% |
1.56 kg / 1558.3 g
15.3 N
|
|
| 80 °C | -6.6% |
1.52 kg / 1522.4 g
14.9 N
|
|
| 100 °C | -28.8% |
1.16 kg / 1160.6 g
11.4 N
|
MW 20x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.86 kg / 2862 g
28.1 N
2 301 Gs
|
N/A |
| 1 mm |
2.76 kg / 2762 g
27.1 N
2 388 Gs
|
2.49 kg / 2486 g
24.4 N
~0 Gs
|
| 2 mm |
2.63 kg / 2627 g
25.8 N
2 329 Gs
|
2.36 kg / 2364 g
23.2 N
~0 Gs
|
| 3 mm |
2.47 kg / 2466 g
24.2 N
2 257 Gs
|
2.22 kg / 2220 g
21.8 N
~0 Gs
|
| 5 mm |
2.10 kg / 2097 g
20.6 N
2 081 Gs
|
1.89 kg / 1887 g
18.5 N
~0 Gs
|
| 10 mm |
1.19 kg / 1187 g
11.6 N
1 565 Gs
|
1.07 kg / 1068 g
10.5 N
~0 Gs
|
| 20 mm |
0.28 kg / 278 g
2.7 N
758 Gs
|
0.25 kg / 250 g
2.5 N
~0 Gs
|
| 50 mm |
0.01 kg / 6 g
0.1 N
115 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 20x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 20x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.87 km/h
(5.52 m/s)
|
0.07 J | |
| 30 mm |
32.51 km/h
(9.03 m/s)
|
0.19 J | |
| 50 mm |
41.95 km/h
(11.65 m/s)
|
0.32 J | |
| 100 mm |
59.33 km/h
(16.48 m/s)
|
0.64 J |
MW 20x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 20x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 038 Mx | 50.4 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
MW 20x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.63 kg | Standard |
| Woda (dno rzeki) |
1.87 kg
(+0.24 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- której grubość wynosi ok. 10 mm
- o wypolerowanej powierzchni styku
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Dystans (pomiędzy magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest stal o wysokiej przenikalności. Stale nierdzewne mogą generować mniejszy udźwig.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Zagrożenie dla nawigacji
Silne pole magnetyczne destabilizuje działanie magnetometrów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Urazy ciała
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa silne magnesy.
Tylko dla dorosłych
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Potężne pole
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
Uczulenie na powłokę
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Wpływ na zdrowie
Pacjenci z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Bezpieczny dystans
Nie zbliżaj magnesów do dokumentów, laptopa czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
