MW 20x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010041
GTIN/EAN: 5906301810407
Średnica Ø
20 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
4.71 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.63 kg / 16.02 N
Indukcja magnetyczna
121.57 mT / 1216 Gs
Powłoka
[NiCuNi] nikiel
2.08 ZŁ z VAT / szt. + cena za transport
1.690 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo skontaktuj się korzystając z
formularz kontaktowy
przez naszą stronę.
Parametry oraz wygląd magnesów zweryfikujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MW 20x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010041 |
| GTIN/EAN | 5906301810407 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 4.71 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.63 kg / 16.02 N |
| Indukcja magnetyczna ~ ? | 121.57 mT / 1216 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Przedstawione informacje są wynik kalkulacji fizycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 20x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1216 Gs
121.6 mT
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
niskie ryzyko |
| 1 mm |
1165 Gs
116.5 mT
|
1.50 kg / 3.30 lbs
1496.3 g / 14.7 N
|
niskie ryzyko |
| 2 mm |
1087 Gs
108.7 mT
|
1.30 kg / 2.87 lbs
1302.7 g / 12.8 N
|
niskie ryzyko |
| 3 mm |
991 Gs
99.1 mT
|
1.08 kg / 2.39 lbs
1083.7 g / 10.6 N
|
niskie ryzyko |
| 5 mm |
783 Gs
78.3 mT
|
0.68 kg / 1.49 lbs
675.9 g / 6.6 N
|
niskie ryzyko |
| 10 mm |
379 Gs
37.9 mT
|
0.16 kg / 0.35 lbs
158.4 g / 1.6 N
|
niskie ryzyko |
| 15 mm |
185 Gs
18.5 mT
|
0.04 kg / 0.08 lbs
37.9 g / 0.4 N
|
niskie ryzyko |
| 20 mm |
99 Gs
9.9 mT
|
0.01 kg / 0.02 lbs
10.8 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 20x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| 1 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
300.0 g / 2.9 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
216.0 g / 2.1 N
|
| 5 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 20x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.49 kg / 1.08 lbs
489.0 g / 4.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.33 kg / 0.72 lbs
326.0 g / 3.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 0.36 lbs
163.0 g / 1.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.82 kg / 1.80 lbs
815.0 g / 8.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 20x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 0.36 lbs
163.0 g / 1.6 N
|
| 1 mm |
|
0.41 kg / 0.90 lbs
407.5 g / 4.0 N
|
| 2 mm |
|
0.82 kg / 1.80 lbs
815.0 g / 8.0 N
|
| 3 mm |
|
1.22 kg / 2.70 lbs
1222.5 g / 12.0 N
|
| 5 mm |
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
| 10 mm |
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
| 11 mm |
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
| 12 mm |
|
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 20x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
OK |
| 40 °C | -2.2% |
1.59 kg / 3.51 lbs
1594.1 g / 15.6 N
|
OK |
| 60 °C | -4.4% |
1.56 kg / 3.44 lbs
1558.3 g / 15.3 N
|
|
| 80 °C | -6.6% |
1.52 kg / 3.36 lbs
1522.4 g / 14.9 N
|
|
| 100 °C | -28.8% |
1.16 kg / 2.56 lbs
1160.6 g / 11.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 20x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.86 kg / 6.31 lbs
2 301 Gs
|
0.43 kg / 0.95 lbs
429 g / 4.2 N
|
N/A |
| 1 mm |
2.76 kg / 6.09 lbs
2 388 Gs
|
0.41 kg / 0.91 lbs
414 g / 4.1 N
|
2.49 kg / 5.48 lbs
~0 Gs
|
| 2 mm |
2.63 kg / 5.79 lbs
2 329 Gs
|
0.39 kg / 0.87 lbs
394 g / 3.9 N
|
2.36 kg / 5.21 lbs
~0 Gs
|
| 3 mm |
2.47 kg / 5.44 lbs
2 257 Gs
|
0.37 kg / 0.82 lbs
370 g / 3.6 N
|
2.22 kg / 4.89 lbs
~0 Gs
|
| 5 mm |
2.10 kg / 4.62 lbs
2 081 Gs
|
0.31 kg / 0.69 lbs
315 g / 3.1 N
|
1.89 kg / 4.16 lbs
~0 Gs
|
| 10 mm |
1.19 kg / 2.62 lbs
1 565 Gs
|
0.18 kg / 0.39 lbs
178 g / 1.7 N
|
1.07 kg / 2.35 lbs
~0 Gs
|
| 20 mm |
0.28 kg / 0.61 lbs
758 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
115 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 20x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 20x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.87 km/h
(5.52 m/s)
|
0.07 J | |
| 30 mm |
32.51 km/h
(9.03 m/s)
|
0.19 J | |
| 50 mm |
41.95 km/h
(11.65 m/s)
|
0.32 J | |
| 100 mm |
59.33 km/h
(16.48 m/s)
|
0.64 J |
Tabela 9: Odporność na korozję
MW 20x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 20x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 038 Mx | 50.4 µWb |
| Współczynnik Pc | 0.16 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 20x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.63 kg | Standard |
| Woda (dno rzeki) |
1.87 kg
(+0.24 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.16
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Elastyczność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co się na to składa?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- o grubości przynajmniej 10 mm
- charakteryzującej się równą strukturą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Praktyczny udźwig: czynniki wpływające
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą przyciągać słabiej.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig określano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża nośność.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Nie lekceważ mocy
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Tylko dla dorosłych
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Implanty medyczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Ryzyko uczulenia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Ochrona urządzeń
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Poważne obrażenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ryzyko rozmagnesowania
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
