Neodymy – pełny wybór kształtów

Chcesz kupić naprawdę silne magnesy? Posiadamy w sprzedaży szeroki wybór magnesów płytkowych, walcowych i pierścieniowych. Są one idealne do użytku w domu, warsztatu oraz zadań przemysłowych. Przejrzyj asortyment dostępne od ręki.

sprawdź katalog magnesów

Magnesy do eksploracji dna

Odkryj pasję związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz mocne linki są niezawodne w rzekach i jeziorach.

wybierz swój magnes do wody

Profesjonalne uchwyty z gwintem

Profesjonalne rozwiązania do montażu bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy instalacji oświetlenia, sensorów oraz banerów.

sprawdź parametry techniczne

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy w 24h!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 10x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010004

GTIN/EAN: 5906301810032

5.00

Średnica Ø

10 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

5.89 g

Kierunek magnesowania

↑ osiowy

Udźwig

3.18 kg / 31.15 N

Indukcja magnetyczna

553.84 mT / 5538 Gs

Powłoka

[NiCuNi] nikiel

4.31 z VAT / szt. + cena za transport

3.50 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
3.50 ZŁ
4.31 ZŁ
cena od 200 szt.
3.29 ZŁ
4.05 ZŁ
cena od 750 szt.
3.08 ZŁ
3.79 ZŁ
Nie wiesz co wybrać?

Zadzwoń już teraz +48 22 499 98 98 lub pisz przez formularz na stronie kontakt.
Siłę a także wygląd magnesu obliczysz u nas w kalkulatorze masy magnetycznej.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Specyfikacja techniczna - MW 10x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 10x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010004
GTIN/EAN 5906301810032
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 10 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 5.89 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 3.18 kg / 31.15 N
Indukcja magnetyczna ~ ? 553.84 mT / 5538 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 10x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza techniczna magnesu - dane

Poniższe informacje są rezultat symulacji fizycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Traktuj te dane jako punkt odniesienia dla projektantów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 10x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 5534 Gs
553.4 mT
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
mocny
1 mm 4428 Gs
442.8 mT
2.04 kg / 4.49 lbs
2036.1 g / 20.0 N
mocny
2 mm 3420 Gs
342.0 mT
1.21 kg / 2.68 lbs
1214.8 g / 11.9 N
niskie ryzyko
3 mm 2597 Gs
259.7 mT
0.70 kg / 1.54 lbs
700.2 g / 6.9 N
niskie ryzyko
5 mm 1498 Gs
149.8 mT
0.23 kg / 0.51 lbs
232.9 g / 2.3 N
niskie ryzyko
10 mm 469 Gs
46.9 mT
0.02 kg / 0.05 lbs
22.9 g / 0.2 N
niskie ryzyko
15 mm 198 Gs
19.8 mT
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
niskie ryzyko
20 mm 101 Gs
10.1 mT
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
niskie ryzyko
30 mm 36 Gs
3.6 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko
50 mm 9 Gs
0.9 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
niskie ryzyko

Tabela 2: Siła równoległa ześlizgu (ściana)
MW 10x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.64 kg / 1.40 lbs
636.0 g / 6.2 N
1 mm Stal (~0.2) 0.41 kg / 0.90 lbs
408.0 g / 4.0 N
2 mm Stal (~0.2) 0.24 kg / 0.53 lbs
242.0 g / 2.4 N
3 mm Stal (~0.2) 0.14 kg / 0.31 lbs
140.0 g / 1.4 N
5 mm Stal (~0.2) 0.05 kg / 0.10 lbs
46.0 g / 0.5 N
10 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 10x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.95 kg / 2.10 lbs
954.0 g / 9.4 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.64 kg / 1.40 lbs
636.0 g / 6.2 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
1.59 kg / 3.51 lbs
1590.0 g / 15.6 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 10x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.32 kg / 0.70 lbs
318.0 g / 3.1 N
1 mm
25%
0.80 kg / 1.75 lbs
795.0 g / 7.8 N
2 mm
50%
1.59 kg / 3.51 lbs
1590.0 g / 15.6 N
3 mm
75%
2.39 kg / 5.26 lbs
2385.0 g / 23.4 N
5 mm
100%
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
10 mm
100%
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
11 mm
100%
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
12 mm
100%
3.18 kg / 7.01 lbs
3180.0 g / 31.2 N

Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 10x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 3.18 kg / 7.01 lbs
3180.0 g / 31.2 N
OK
40 °C -2.2% 3.11 kg / 6.86 lbs
3110.0 g / 30.5 N
OK
60 °C -4.4% 3.04 kg / 6.70 lbs
3040.1 g / 29.8 N
OK
80 °C -6.6% 2.97 kg / 6.55 lbs
2970.1 g / 29.1 N
100 °C -28.8% 2.26 kg / 4.99 lbs
2264.2 g / 22.2 N

Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 10x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła zsuwania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 14.83 kg / 32.69 lbs
6 003 Gs
2.22 kg / 4.90 lbs
2224 g / 21.8 N
N/A
1 mm 12.01 kg / 26.48 lbs
9 962 Gs
1.80 kg / 3.97 lbs
1802 g / 17.7 N
10.81 kg / 23.83 lbs
~0 Gs
2 mm 9.50 kg / 20.93 lbs
8 857 Gs
1.42 kg / 3.14 lbs
1424 g / 14.0 N
8.55 kg / 18.84 lbs
~0 Gs
3 mm 7.38 kg / 16.27 lbs
7 809 Gs
1.11 kg / 2.44 lbs
1107 g / 10.9 N
6.64 kg / 14.64 lbs
~0 Gs
5 mm 4.31 kg / 9.50 lbs
5 968 Gs
0.65 kg / 1.43 lbs
647 g / 6.3 N
3.88 kg / 8.55 lbs
~0 Gs
10 mm 1.09 kg / 2.39 lbs
2 996 Gs
0.16 kg / 0.36 lbs
163 g / 1.6 N
0.98 kg / 2.16 lbs
~0 Gs
20 mm 0.11 kg / 0.24 lbs
939 Gs
0.02 kg / 0.04 lbs
16 g / 0.2 N
0.10 kg / 0.21 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
116 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
73 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
49 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
34 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
25 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 10x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 6.5 cm
Implant słuchowy 10 Gs (1.0 mT) 5.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 4.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 3.0 cm
Pilot do auta 50 Gs (5.0 mT) 3.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 10x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 23.54 km/h
(6.54 m/s)
0.13 J
30 mm 40.59 km/h
(11.27 m/s)
0.37 J
50 mm 52.40 km/h
(14.56 m/s)
0.62 J
100 mm 74.10 km/h
(20.58 m/s)
1.25 J

Tabela 9: Specyfikacja ochrony powierzchni
MW 10x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MW 10x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 4 481 Mx 44.8 µWb
Współczynnik Pc 0.89 Wysoki (Stabilny)

Tabela 11: Fizyka poszukiwań podwodnych
MW 10x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 3.18 kg Standard
Woda (dno rzeki) 3.64 kg
(+0.46 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na ścianie (ześlizg)

*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.

2. Grubość podłoża

*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.

3. Praca w cieple

*W klasie N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.89

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010004-2026
Szybki konwerter jednostek
Udźwig magnesu

Pole magnetyczne

Inne propozycje

Oferowany produkt to bardzo silny magnes walcowy, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø10x10 mm gwarantuje najwyższą gęstość energii. Komponent MW 10x10 / N38 cechuje się dokładnością ±0,1mm oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako walec magnetyczny o dużej sile (ok. 3.18 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia szybką realizację zamówienia. Ponadto, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem sprawdza się w projektach DIY, zaawansowanej automatyce oraz szeroko pojętym przemyśle, służąc jako element pozycjonujący lub wykonawczy. Dzięki dużej mocy 31.15 N przy wadze zaledwie 5.89 g, ten magnes cylindryczny jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ponieważ nasze magnesy mają tolerancję ±0,1mm, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 10,1 mm) przy użyciu dwuskładnikowych klejów epoksydowych. Dla zapewnienia stabilności w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najczęściej wybierany standard dla przemysłowych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz wysoką odporność na demagnetyzację. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø10x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym sklepie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 10 mm i wysokość 10 mm. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 3.18 kg (siła ~31.15 N), co przy tak kompaktowych wymiarach świadczy o dużej mocy materiału NdFeB. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Ten magnes walcowy jest magnesowany osiowo (wzdłuż wysokości 10 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady oraz zalety magnesów z neodymu Nd2Fe14B.

Plusy

Neodymy to nie tylko siła, ale także inne istotne cechy, w tym::
  • Długowieczność to ich atut – po upływie dekady utrata siły magnetycznej wynosi tylko ~1% (teoretycznie).
  • Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
  • Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
  • Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
  • Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
  • Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
  • Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i sprzętu medycznego.
  • Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.

Ograniczenia

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
  • Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.

Analiza siły trzymania

Wytrzymałość na oderwanie magnesu w warunkach idealnychco się na to składa?

Podany w tabeli udźwig jest wynikiem testu laboratoryjnego zrealizowanego w następującej konfiguracji:
  • z wykorzystaniem blachy ze miękkiej stali, która służy jako element zamykający obwód
  • której grubość to min. 10 mm
  • charakteryzującej się brakiem chropowatości
  • w warunkach idealnego przylegania (metal do metalu)
  • przy pionowym kierunku działania siły (kąt 90 stopni)
  • w temperaturze pokojowej

Kluczowe elementy wpływające na udźwig

Warto wiedzieć, iż siła w aplikacji będzie inne w zależności od następujących czynników, zaczynając od najistotniejszych:
  • Dystans (pomiędzy magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
  • Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
  • Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują właściwości magnetyczne i siłę trzymania.
  • Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
  • Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.

Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża nośność.

Bezpieczna praca przy magnesach z neodymem
Zasady obsługi

Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.

Urazy ciała

Duże magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa silne magnesy.

Trwała utrata siły

Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.

Interferencja magnetyczna

Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.

Ryzyko uczulenia

Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.

Bezpieczny dystans

Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).

Zagrożenie zapłonem

Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.

Kruchość materiału

Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.

Ryzyko połknięcia

Neodymowe magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.

Wpływ na zdrowie

Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.

Ważne! Chcesz wiedzieć więcej? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98