MW 16x9 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010035
GTIN/EAN: 5906301810346
Średnica Ø
16 mm [±0,1 mm]
Wysokość
9 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.53 kg / 83.64 N
Indukcja magnetyczna
463.05 mT / 4631 Gs
Powłoka
[NiCuNi] nikiel
7.36 ZŁ z VAT / szt. + cena za transport
5.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub napisz korzystając z
formularz zapytania
w sekcji kontakt.
Masę oraz formę magnesów przetestujesz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MW 16x9 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 16x9 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010035 |
| GTIN/EAN | 5906301810346 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 9 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.53 kg / 83.64 N |
| Indukcja magnetyczna ~ ? | 463.05 mT / 4631 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Niniejsze wartości stanowią rezultat kalkulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 16x9 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4628 Gs
462.8 mT
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
mocny |
| 1 mm |
4072 Gs
407.2 mT
|
6.60 kg / 14.56 lbs
6603.5 g / 64.8 N
|
mocny |
| 2 mm |
3510 Gs
351.0 mT
|
4.91 kg / 10.82 lbs
4906.8 g / 48.1 N
|
mocny |
| 3 mm |
2982 Gs
298.2 mT
|
3.54 kg / 7.80 lbs
3540.1 g / 34.7 N
|
mocny |
| 5 mm |
2097 Gs
209.7 mT
|
1.75 kg / 3.86 lbs
1751.1 g / 17.2 N
|
niskie ryzyko |
| 10 mm |
873 Gs
87.3 mT
|
0.30 kg / 0.67 lbs
303.3 g / 3.0 N
|
niskie ryzyko |
| 15 mm |
411 Gs
41.1 mT
|
0.07 kg / 0.15 lbs
67.3 g / 0.7 N
|
niskie ryzyko |
| 20 mm |
220 Gs
22.0 mT
|
0.02 kg / 0.04 lbs
19.3 g / 0.2 N
|
niskie ryzyko |
| 30 mm |
83 Gs
8.3 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 16x9 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.71 kg / 3.76 lbs
1706.0 g / 16.7 N
|
| 1 mm | Stal (~0.2) |
1.32 kg / 2.91 lbs
1320.0 g / 12.9 N
|
| 2 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
982.0 g / 9.6 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.56 lbs
708.0 g / 6.9 N
|
| 5 mm | Stal (~0.2) |
0.35 kg / 0.77 lbs
350.0 g / 3.4 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 16x9 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.56 kg / 5.64 lbs
2559.0 g / 25.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.71 kg / 3.76 lbs
1706.0 g / 16.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.85 kg / 1.88 lbs
853.0 g / 8.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.27 kg / 9.40 lbs
4265.0 g / 41.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 16x9 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.85 kg / 1.88 lbs
853.0 g / 8.4 N
|
| 1 mm |
|
2.13 kg / 4.70 lbs
2132.5 g / 20.9 N
|
| 2 mm |
|
4.27 kg / 9.40 lbs
4265.0 g / 41.8 N
|
| 3 mm |
|
6.40 kg / 14.10 lbs
6397.5 g / 62.8 N
|
| 5 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 10 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 11 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
| 12 mm |
|
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 16x9 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.53 kg / 18.81 lbs
8530.0 g / 83.7 N
|
OK |
| 40 °C | -2.2% |
8.34 kg / 18.39 lbs
8342.3 g / 81.8 N
|
OK |
| 60 °C | -4.4% |
8.15 kg / 17.98 lbs
8154.7 g / 80.0 N
|
OK |
| 80 °C | -6.6% |
7.97 kg / 17.56 lbs
7967.0 g / 78.2 N
|
|
| 100 °C | -28.8% |
6.07 kg / 13.39 lbs
6073.4 g / 59.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 16x9 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
26.55 kg / 58.54 lbs
5 658 Gs
|
3.98 kg / 8.78 lbs
3983 g / 39.1 N
|
N/A |
| 1 mm |
23.52 kg / 51.85 lbs
8 711 Gs
|
3.53 kg / 7.78 lbs
3528 g / 34.6 N
|
21.17 kg / 46.66 lbs
~0 Gs
|
| 2 mm |
20.56 kg / 45.32 lbs
8 145 Gs
|
3.08 kg / 6.80 lbs
3084 g / 30.2 N
|
18.50 kg / 40.79 lbs
~0 Gs
|
| 3 mm |
17.80 kg / 39.23 lbs
7 578 Gs
|
2.67 kg / 5.89 lbs
2669 g / 26.2 N
|
16.02 kg / 35.31 lbs
~0 Gs
|
| 5 mm |
13.01 kg / 28.69 lbs
6 481 Gs
|
1.95 kg / 4.30 lbs
1952 g / 19.2 N
|
11.71 kg / 25.82 lbs
~0 Gs
|
| 10 mm |
5.45 kg / 12.02 lbs
4 194 Gs
|
0.82 kg / 1.80 lbs
818 g / 8.0 N
|
4.91 kg / 10.82 lbs
~0 Gs
|
| 20 mm |
0.94 kg / 2.08 lbs
1 746 Gs
|
0.14 kg / 0.31 lbs
142 g / 1.4 N
|
0.85 kg / 1.87 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.05 lbs
260 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
166 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
79 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 16x9 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 16x9 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.84 km/h
(7.18 m/s)
|
0.35 J | |
| 30 mm |
43.80 km/h
(12.17 m/s)
|
1.00 J | |
| 50 mm |
56.54 km/h
(15.71 m/s)
|
1.67 J | |
| 100 mm |
79.96 km/h
(22.21 m/s)
|
3.35 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 16x9 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 16x9 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 394 Mx | 93.9 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 16x9 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.53 kg | Standard |
| Woda (dno rzeki) |
9.77 kg
(+1.24 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Kruchość to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem podłoża ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- o przekroju wynoszącej minimum 10 mm
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (metal do metalu)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają interakcję z magnesem.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Nie dawać dzieciom
Magnesy neodymowe nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Ostrzeżenie dla alergików
Część populacji posiada uczulenie na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Długotrwała ekspozycja może powodować zaczerwienienie skóry. Wskazane jest noszenie rękawic bezlateksowych.
Rozprysk materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Trwała utrata siły
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Bezpieczna praca
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
