MW 16x9 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010035
GTIN/EAN: 5906301810346
Średnica Ø
16 mm [±0,1 mm]
Wysokość
9 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.53 kg / 83.64 N
Indukcja magnetyczna
463.05 mT / 4631 Gs
Powłoka
[NiCuNi] nikiel
7.36 ZŁ z VAT / szt. + cena za transport
5.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo skontaktuj się poprzez
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig i kształt magnesów neodymowych skontrolujesz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane produktu - MW 16x9 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 16x9 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010035 |
| GTIN/EAN | 5906301810346 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 9 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.53 kg / 83.64 N |
| Indukcja magnetyczna ~ ? | 463.05 mT / 4631 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Przedstawione dane są wynik analizy inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 16x9 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4628 Gs
462.8 mT
|
8.53 kg / 8530.0 g
83.7 N
|
uwaga |
| 1 mm |
4072 Gs
407.2 mT
|
6.60 kg / 6603.5 g
64.8 N
|
uwaga |
| 2 mm |
3510 Gs
351.0 mT
|
4.91 kg / 4906.8 g
48.1 N
|
uwaga |
| 3 mm |
2982 Gs
298.2 mT
|
3.54 kg / 3540.1 g
34.7 N
|
uwaga |
| 5 mm |
2097 Gs
209.7 mT
|
1.75 kg / 1751.1 g
17.2 N
|
słaby uchwyt |
| 10 mm |
873 Gs
87.3 mT
|
0.30 kg / 303.3 g
3.0 N
|
słaby uchwyt |
| 15 mm |
411 Gs
41.1 mT
|
0.07 kg / 67.3 g
0.7 N
|
słaby uchwyt |
| 20 mm |
220 Gs
22.0 mT
|
0.02 kg / 19.3 g
0.2 N
|
słaby uchwyt |
| 30 mm |
83 Gs
8.3 mT
|
0.00 kg / 2.7 g
0.0 N
|
słaby uchwyt |
| 50 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.2 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MW 16x9 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.71 kg / 1706.0 g
16.7 N
|
| 1 mm | Stal (~0.2) |
1.32 kg / 1320.0 g
12.9 N
|
| 2 mm | Stal (~0.2) |
0.98 kg / 982.0 g
9.6 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 708.0 g
6.9 N
|
| 5 mm | Stal (~0.2) |
0.35 kg / 350.0 g
3.4 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 60.0 g
0.6 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 16x9 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.56 kg / 2559.0 g
25.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.71 kg / 1706.0 g
16.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.85 kg / 853.0 g
8.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.27 kg / 4265.0 g
41.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 16x9 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.85 kg / 853.0 g
8.4 N
|
| 1 mm |
|
2.13 kg / 2132.5 g
20.9 N
|
| 2 mm |
|
4.27 kg / 4265.0 g
41.8 N
|
| 5 mm |
|
8.53 kg / 8530.0 g
83.7 N
|
| 10 mm |
|
8.53 kg / 8530.0 g
83.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 16x9 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.53 kg / 8530.0 g
83.7 N
|
OK |
| 40 °C | -2.2% |
8.34 kg / 8342.3 g
81.8 N
|
OK |
| 60 °C | -4.4% |
8.15 kg / 8154.7 g
80.0 N
|
OK |
| 80 °C | -6.6% |
7.97 kg / 7967.0 g
78.2 N
|
|
| 100 °C | -28.8% |
6.07 kg / 6073.4 g
59.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 16x9 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
26.55 kg / 26554 g
260.5 N
5 658 Gs
|
N/A |
| 1 mm |
23.52 kg / 23517 g
230.7 N
8 711 Gs
|
21.17 kg / 21165 g
207.6 N
~0 Gs
|
| 2 mm |
20.56 kg / 20557 g
201.7 N
8 145 Gs
|
18.50 kg / 18501 g
181.5 N
~0 Gs
|
| 3 mm |
17.80 kg / 17796 g
174.6 N
7 578 Gs
|
16.02 kg / 16017 g
157.1 N
~0 Gs
|
| 5 mm |
13.01 kg / 13015 g
127.7 N
6 481 Gs
|
11.71 kg / 11713 g
114.9 N
~0 Gs
|
| 10 mm |
5.45 kg / 5451 g
53.5 N
4 194 Gs
|
4.91 kg / 4906 g
48.1 N
~0 Gs
|
| 20 mm |
0.94 kg / 944 g
9.3 N
1 746 Gs
|
0.85 kg / 850 g
8.3 N
~0 Gs
|
| 50 mm |
0.02 kg / 21 g
0.2 N
260 Gs
|
0.02 kg / 19 g
0.2 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 16x9 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 16x9 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.84 km/h
(7.18 m/s)
|
0.35 J | |
| 30 mm |
43.80 km/h
(12.17 m/s)
|
1.00 J | |
| 50 mm |
56.54 km/h
(15.71 m/s)
|
1.67 J | |
| 100 mm |
79.96 km/h
(22.21 m/s)
|
3.35 J |
Tabela 9: Parametry powłoki (trwałość)
MW 16x9 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 16x9 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 394 Mx | 93.9 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 16x9 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.53 kg | Standard |
| Woda (dno rzeki) |
9.77 kg
(+1.24 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- z płaszczyzną wolną od rys
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Dystans (pomiędzy magnesem a metalem), ponieważ nawet niewielka odległość (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza nośność.
BHP przy magnesach
Elektronika precyzyjna
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Ryzyko pęknięcia
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Urządzenia elektroniczne
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Uwaga: zadławienie
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Reakcje alergiczne
Pewna grupa użytkowników wykazuje uczulenie na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może powodować silną reakcję alergiczną. Wskazane jest stosowanie rękawic bezlateksowych.
Wpływ na zdrowie
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Świadome użytkowanie
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
