MW 16x9 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010035
GTIN/EAN: 5906301810346
Średnica Ø
16 mm [±0,1 mm]
Wysokość
9 mm [±0,1 mm]
Waga
13.57 g
Kierunek magnesowania
↑ osiowy
Udźwig
8.53 kg / 83.64 N
Indukcja magnetyczna
463.05 mT / 4631 Gs
Powłoka
[NiCuNi] nikiel
7.36 ZŁ z VAT / szt. + cena za transport
5.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz problem z wyborem?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie napisz za pomocą
formularz zgłoszeniowy
na stronie kontaktowej.
Właściwości oraz formę magnesów skontrolujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 16x9 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 16x9 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010035 |
| GTIN/EAN | 5906301810346 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 9 mm [±0,1 mm] |
| Waga | 13.57 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 8.53 kg / 83.64 N |
| Indukcja magnetyczna ~ ? | 463.05 mT / 4631 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Poniższe wartości stanowią bezpośredni efekt analizy inżynierskiej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
MW 16x9 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4628 Gs
462.8 mT
|
8.53 kg / 8530.0 g
83.7 N
|
średnie ryzyko |
| 1 mm |
4072 Gs
407.2 mT
|
6.60 kg / 6603.5 g
64.8 N
|
średnie ryzyko |
| 2 mm |
3510 Gs
351.0 mT
|
4.91 kg / 4906.8 g
48.1 N
|
średnie ryzyko |
| 3 mm |
2982 Gs
298.2 mT
|
3.54 kg / 3540.1 g
34.7 N
|
średnie ryzyko |
| 5 mm |
2097 Gs
209.7 mT
|
1.75 kg / 1751.1 g
17.2 N
|
niskie ryzyko |
| 10 mm |
873 Gs
87.3 mT
|
0.30 kg / 303.3 g
3.0 N
|
niskie ryzyko |
| 15 mm |
411 Gs
41.1 mT
|
0.07 kg / 67.3 g
0.7 N
|
niskie ryzyko |
| 20 mm |
220 Gs
22.0 mT
|
0.02 kg / 19.3 g
0.2 N
|
niskie ryzyko |
| 30 mm |
83 Gs
8.3 mT
|
0.00 kg / 2.7 g
0.0 N
|
niskie ryzyko |
| 50 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
MW 16x9 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.71 kg / 1706.0 g
16.7 N
|
| 1 mm | Stal (~0.2) |
1.32 kg / 1320.0 g
12.9 N
|
| 2 mm | Stal (~0.2) |
0.98 kg / 982.0 g
9.6 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 708.0 g
6.9 N
|
| 5 mm | Stal (~0.2) |
0.35 kg / 350.0 g
3.4 N
|
| 10 mm | Stal (~0.2) |
0.06 kg / 60.0 g
0.6 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 16x9 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.56 kg / 2559.0 g
25.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.71 kg / 1706.0 g
16.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.85 kg / 853.0 g
8.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.27 kg / 4265.0 g
41.8 N
|
MW 16x9 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.85 kg / 853.0 g
8.4 N
|
| 1 mm |
|
2.13 kg / 2132.5 g
20.9 N
|
| 2 mm |
|
4.27 kg / 4265.0 g
41.8 N
|
| 5 mm |
|
8.53 kg / 8530.0 g
83.7 N
|
| 10 mm |
|
8.53 kg / 8530.0 g
83.7 N
|
MW 16x9 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
8.53 kg / 8530.0 g
83.7 N
|
OK |
| 40 °C | -2.2% |
8.34 kg / 8342.3 g
81.8 N
|
OK |
| 60 °C | -4.4% |
8.15 kg / 8154.7 g
80.0 N
|
OK |
| 80 °C | -6.6% |
7.97 kg / 7967.0 g
78.2 N
|
|
| 100 °C | -28.8% |
6.07 kg / 6073.4 g
59.6 N
|
MW 16x9 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
26.55 kg / 26554 g
260.5 N
5 658 Gs
|
N/A |
| 1 mm |
23.52 kg / 23517 g
230.7 N
8 711 Gs
|
21.17 kg / 21165 g
207.6 N
~0 Gs
|
| 2 mm |
20.56 kg / 20557 g
201.7 N
8 145 Gs
|
18.50 kg / 18501 g
181.5 N
~0 Gs
|
| 3 mm |
17.80 kg / 17796 g
174.6 N
7 578 Gs
|
16.02 kg / 16017 g
157.1 N
~0 Gs
|
| 5 mm |
13.01 kg / 13015 g
127.7 N
6 481 Gs
|
11.71 kg / 11713 g
114.9 N
~0 Gs
|
| 10 mm |
5.45 kg / 5451 g
53.5 N
4 194 Gs
|
4.91 kg / 4906 g
48.1 N
~0 Gs
|
| 20 mm |
0.94 kg / 944 g
9.3 N
1 746 Gs
|
0.85 kg / 850 g
8.3 N
~0 Gs
|
| 50 mm |
0.02 kg / 21 g
0.2 N
260 Gs
|
0.02 kg / 19 g
0.2 N
~0 Gs
|
MW 16x9 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 16x9 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.84 km/h
(7.18 m/s)
|
0.35 J | |
| 30 mm |
43.80 km/h
(12.17 m/s)
|
1.00 J | |
| 50 mm |
56.54 km/h
(15.71 m/s)
|
1.67 J | |
| 100 mm |
79.96 km/h
(22.21 m/s)
|
3.35 J |
MW 16x9 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 16x9 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 394 Mx | 93.9 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
MW 16x9 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 8.53 kg | Standard |
| Woda (dno rzeki) |
9.77 kg
(+1.24 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Dzięki powłoce (nikiel, złoto, Ag) zyskują nowoczesny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy komputery.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- o szlifowanej powierzchni kontaktu
- przy zerowej szczelinie (bez powłok)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka płyta nie zamyka strumienia, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Ostrzeżenie dla alergików
Część populacji posiada uczulenie na nikiel, którym powlekane są standardowo magnesy neodymowe. Dłuższy kontakt może powodować wysypkę. Sugerujemy noszenie rękawic bezlateksowych.
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Nie dawać dzieciom
Silne magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie czujników w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
