MW 16x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010034
GTIN/EAN: 5906301810339
Średnica Ø
16 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
6.03 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.43 kg / 43.46 N
Indukcja magnetyczna
277.14 mT / 2771 Gs
Powłoka
[NiCuNi] nikiel
3.39 ZŁ z VAT / szt. + cena za transport
2.76 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie napisz przez
formularz zgłoszeniowy
przez naszą stronę.
Udźwig a także kształt magnesów przetestujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry - MW 16x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 16x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010034 |
| GTIN/EAN | 5906301810339 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 6.03 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.43 kg / 43.46 N |
| Indukcja magnetyczna ~ ? | 277.14 mT / 2771 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione wartości są bezpośredni efekt analizy fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MW 16x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
4.43 kg / 4430.0 g
43.5 N
|
mocny |
| 1 mm |
2517 Gs
251.7 mT
|
3.66 kg / 3656.3 g
35.9 N
|
mocny |
| 2 mm |
2216 Gs
221.6 mT
|
2.83 kg / 2834.9 g
27.8 N
|
mocny |
| 3 mm |
1906 Gs
190.6 mT
|
2.10 kg / 2096.1 g
20.6 N
|
mocny |
| 5 mm |
1348 Gs
134.8 mT
|
1.05 kg / 1048.6 g
10.3 N
|
słaby uchwyt |
| 10 mm |
542 Gs
54.2 mT
|
0.17 kg / 169.4 g
1.7 N
|
słaby uchwyt |
| 15 mm |
244 Gs
24.4 mT
|
0.03 kg / 34.2 g
0.3 N
|
słaby uchwyt |
| 20 mm |
125 Gs
12.5 mT
|
0.01 kg / 9.1 g
0.1 N
|
słaby uchwyt |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 1.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 16x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.89 kg / 886.0 g
8.7 N
|
| 1 mm | Stal (~0.2) |
0.73 kg / 732.0 g
7.2 N
|
| 2 mm | Stal (~0.2) |
0.57 kg / 566.0 g
5.6 N
|
| 3 mm | Stal (~0.2) |
0.42 kg / 420.0 g
4.1 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 210.0 g
2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 16x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.33 kg / 1329.0 g
13.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.89 kg / 886.0 g
8.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.44 kg / 443.0 g
4.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.22 kg / 2215.0 g
21.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 16x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.44 kg / 443.0 g
4.3 N
|
| 1 mm |
|
1.11 kg / 1107.5 g
10.9 N
|
| 2 mm |
|
2.22 kg / 2215.0 g
21.7 N
|
| 5 mm |
|
4.43 kg / 4430.0 g
43.5 N
|
| 10 mm |
|
4.43 kg / 4430.0 g
43.5 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 16x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.43 kg / 4430.0 g
43.5 N
|
OK |
| 40 °C | -2.2% |
4.33 kg / 4332.5 g
42.5 N
|
OK |
| 60 °C | -4.4% |
4.24 kg / 4235.1 g
41.5 N
|
|
| 80 °C | -6.6% |
4.14 kg / 4137.6 g
40.6 N
|
|
| 100 °C | -28.8% |
3.15 kg / 3154.2 g
30.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 16x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
9.51 kg / 9514 g
93.3 N
4 379 Gs
|
N/A |
| 1 mm |
8.72 kg / 8724 g
85.6 N
5 306 Gs
|
7.85 kg / 7851 g
77.0 N
~0 Gs
|
| 2 mm |
7.85 kg / 7853 g
77.0 N
5 034 Gs
|
7.07 kg / 7068 g
69.3 N
~0 Gs
|
| 3 mm |
6.96 kg / 6962 g
68.3 N
4 740 Gs
|
6.27 kg / 6266 g
61.5 N
~0 Gs
|
| 5 mm |
5.26 kg / 5262 g
51.6 N
4 121 Gs
|
4.74 kg / 4736 g
46.5 N
~0 Gs
|
| 10 mm |
2.25 kg / 2252 g
22.1 N
2 696 Gs
|
2.03 kg / 2027 g
19.9 N
~0 Gs
|
| 20 mm |
0.36 kg / 364 g
3.6 N
1 083 Gs
|
0.33 kg / 327 g
3.2 N
~0 Gs
|
| 50 mm |
0.01 kg / 6 g
0.1 N
143 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 16x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 16x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.98 km/h
(7.77 m/s)
|
0.18 J | |
| 30 mm |
47.35 km/h
(13.15 m/s)
|
0.52 J | |
| 50 mm |
61.12 km/h
(16.98 m/s)
|
0.87 J | |
| 100 mm |
86.44 km/h
(24.01 m/s)
|
1.74 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 16x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 16x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 192 Mx | 61.9 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 16x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.43 kg | Standard |
| Woda (dno rzeki) |
5.07 kg
(+0.64 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z użyciem blachy ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się brakiem chropowatości
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Czynniki determinujące udźwig w warunkach realnych
- Dystans (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna odległość (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – zbyt cienka stal nie przyjmuje całego pola, przez co część mocy marnuje się w powietrzu.
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje siłę trzymania.
Ostrzeżenia
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Wpływ na zdrowie
Osoby z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zatrzymać działanie implantu.
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Zakaz zabawy
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Kompas i GPS
Silne pole magnetyczne zakłóca działanie czujników w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Niszczenie danych
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Nie wierć w magnesach
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ogromna siła
Zachowaj rozwagę. Magnesy neodymowe działają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
