MW 16x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010034
GTIN/EAN: 5906301810339
Średnica Ø
16 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
6.03 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.43 kg / 43.46 N
Indukcja magnetyczna
277.14 mT / 2771 Gs
Powłoka
[NiCuNi] nikiel
3.39 ZŁ z VAT / szt. + cena za transport
2.76 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie zostaw wiadomość przez
nasz formularz online
na naszej stronie.
Udźwig i formę magnesu zweryfikujesz dzięki naszemu
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 16x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 16x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010034 |
| GTIN/EAN | 5906301810339 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 6.03 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.43 kg / 43.46 N |
| Indukcja magnetyczna ~ ? | 277.14 mT / 2771 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Przedstawione dane stanowią rezultat kalkulacji matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 16x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
średnie ryzyko |
| 1 mm |
2517 Gs
251.7 mT
|
3.66 kg / 8.06 lbs
3656.3 g / 35.9 N
|
średnie ryzyko |
| 2 mm |
2216 Gs
221.6 mT
|
2.83 kg / 6.25 lbs
2834.9 g / 27.8 N
|
średnie ryzyko |
| 3 mm |
1906 Gs
190.6 mT
|
2.10 kg / 4.62 lbs
2096.1 g / 20.6 N
|
średnie ryzyko |
| 5 mm |
1348 Gs
134.8 mT
|
1.05 kg / 2.31 lbs
1048.6 g / 10.3 N
|
niskie ryzyko |
| 10 mm |
542 Gs
54.2 mT
|
0.17 kg / 0.37 lbs
169.4 g / 1.7 N
|
niskie ryzyko |
| 15 mm |
244 Gs
24.4 mT
|
0.03 kg / 0.08 lbs
34.2 g / 0.3 N
|
niskie ryzyko |
| 20 mm |
125 Gs
12.5 mT
|
0.01 kg / 0.02 lbs
9.1 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 16x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| 1 mm | Stal (~0.2) |
0.73 kg / 1.61 lbs
732.0 g / 7.2 N
|
| 2 mm | Stal (~0.2) |
0.57 kg / 1.25 lbs
566.0 g / 5.6 N
|
| 3 mm | Stal (~0.2) |
0.42 kg / 0.93 lbs
420.0 g / 4.1 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 16x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.33 kg / 2.93 lbs
1329.0 g / 13.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.89 kg / 1.95 lbs
886.0 g / 8.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.44 kg / 0.98 lbs
443.0 g / 4.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.22 kg / 4.88 lbs
2215.0 g / 21.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 16x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.44 kg / 0.98 lbs
443.0 g / 4.3 N
|
| 1 mm |
|
1.11 kg / 2.44 lbs
1107.5 g / 10.9 N
|
| 2 mm |
|
2.22 kg / 4.88 lbs
2215.0 g / 21.7 N
|
| 3 mm |
|
3.32 kg / 7.32 lbs
3322.5 g / 32.6 N
|
| 5 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 10 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 11 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
| 12 mm |
|
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 16x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.43 kg / 9.77 lbs
4430.0 g / 43.5 N
|
OK |
| 40 °C | -2.2% |
4.33 kg / 9.55 lbs
4332.5 g / 42.5 N
|
OK |
| 60 °C | -4.4% |
4.24 kg / 9.34 lbs
4235.1 g / 41.5 N
|
|
| 80 °C | -6.6% |
4.14 kg / 9.12 lbs
4137.6 g / 40.6 N
|
|
| 100 °C | -28.8% |
3.15 kg / 6.95 lbs
3154.2 g / 30.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 16x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.51 kg / 20.98 lbs
4 379 Gs
|
1.43 kg / 3.15 lbs
1427 g / 14.0 N
|
N/A |
| 1 mm |
8.72 kg / 19.23 lbs
5 306 Gs
|
1.31 kg / 2.88 lbs
1309 g / 12.8 N
|
7.85 kg / 17.31 lbs
~0 Gs
|
| 2 mm |
7.85 kg / 17.31 lbs
5 034 Gs
|
1.18 kg / 2.60 lbs
1178 g / 11.6 N
|
7.07 kg / 15.58 lbs
~0 Gs
|
| 3 mm |
6.96 kg / 15.35 lbs
4 740 Gs
|
1.04 kg / 2.30 lbs
1044 g / 10.2 N
|
6.27 kg / 13.81 lbs
~0 Gs
|
| 5 mm |
5.26 kg / 11.60 lbs
4 121 Gs
|
0.79 kg / 1.74 lbs
789 g / 7.7 N
|
4.74 kg / 10.44 lbs
~0 Gs
|
| 10 mm |
2.25 kg / 4.97 lbs
2 696 Gs
|
0.34 kg / 0.74 lbs
338 g / 3.3 N
|
2.03 kg / 4.47 lbs
~0 Gs
|
| 20 mm |
0.36 kg / 0.80 lbs
1 083 Gs
|
0.05 kg / 0.12 lbs
55 g / 0.5 N
|
0.33 kg / 0.72 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
143 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
89 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 16x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 16x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.98 km/h
(7.77 m/s)
|
0.18 J | |
| 30 mm |
47.35 km/h
(13.15 m/s)
|
0.52 J | |
| 50 mm |
61.12 km/h
(16.98 m/s)
|
0.87 J | |
| 100 mm |
86.44 km/h
(24.01 m/s)
|
1.74 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 16x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 16x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 192 Mx | 61.9 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 16x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.43 kg | Standard |
| Woda (dno rzeki) |
5.07 kg
(+0.64 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi zaledwie ~1% (teoretycznie).
- Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (nikiel, złoto, srebro) zyskują nowoczesny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- której grubość to min. 10 mm
- z powierzchnią wolną od rys
- przy całkowitym braku odstępu (brak farby)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w neutralnych warunkach termicznych
Udźwig w praktyce – czynniki wpływu
- Dystans (pomiędzy magnesem a metalem), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
- Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza udźwig.
Bezpieczna praca z magnesami neodymowymi
Zagrożenie dla najmłodszych
Neodymowe magnesy to nie zabawki. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Unikaj kontaktu w przypadku alergii
Niektóre osoby posiada alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może wywołać wysypkę. Wskazane jest używanie rękawiczek ochronnych.
Uszkodzenia czujników
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Ryzyko złamań
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Niszczenie danych
Ekstremalne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Nie lekceważ mocy
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
