MW 16x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010033
GTIN: 5906301810322
Średnica Ø
16 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
4.52 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.97 kg / 29.11 N
Indukcja magnetyczna
217.61 mT / 2176 Gs
Powłoka
[NiCuNi] nikiel
1.734 ZŁ z VAT / szt. + cena za transport
1.410 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń do nas
+48 888 99 98 98
lub pisz korzystając z
formularz zgłoszeniowy
przez naszą stronę.
Moc i wygląd elementów magnetycznych testujesz u nas w
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
MW 16x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 16x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010033 |
| GTIN | 5906301810322 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 16 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 4.52 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.97 kg / 29.11 N |
| Indukcja magnetyczna ~ ? | 217.61 mT / 2176 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze informacje stanowią wynik kalkulacji matematycznej. Wartości bazują na modelach dla materiału NdFeB. Realne parametry mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
MW 16x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2176 Gs
217.6 mT
|
2.97 kg / 2970.0 g
29.1 N
|
mocny |
| 1 mm |
2004 Gs
200.4 mT
|
2.52 kg / 2519.3 g
24.7 N
|
mocny |
| 2 mm |
1782 Gs
178.2 mT
|
1.99 kg / 1993.2 g
19.6 N
|
niskie ryzyko |
| 3 mm |
1543 Gs
154.3 mT
|
1.49 kg / 1494.0 g
14.7 N
|
niskie ryzyko |
| 5 mm |
1098 Gs
109.8 mT
|
0.76 kg / 756.6 g
7.4 N
|
niskie ryzyko |
| 10 mm |
439 Gs
43.9 mT
|
0.12 kg / 120.9 g
1.2 N
|
niskie ryzyko |
| 15 mm |
195 Gs
19.5 mT
|
0.02 kg / 23.9 g
0.2 N
|
niskie ryzyko |
| 20 mm |
99 Gs
9.9 mT
|
0.01 kg / 6.2 g
0.1 N
|
niskie ryzyko |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.8 g
0.0 N
|
niskie ryzyko |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
MW 16x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.59 kg / 594.0 g
5.8 N
|
| 1 mm | Stal (~0.2) |
0.50 kg / 504.0 g
4.9 N
|
| 2 mm | Stal (~0.2) |
0.40 kg / 398.0 g
3.9 N
|
| 3 mm | Stal (~0.2) |
0.30 kg / 298.0 g
2.9 N
|
| 5 mm | Stal (~0.2) |
0.15 kg / 152.0 g
1.5 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 16x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.89 kg / 891.0 g
8.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.59 kg / 594.0 g
5.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.30 kg / 297.0 g
2.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.49 kg / 1485.0 g
14.6 N
|
MW 16x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.30 kg / 297.0 g
2.9 N
|
| 1 mm |
|
0.74 kg / 742.5 g
7.3 N
|
| 2 mm |
|
1.49 kg / 1485.0 g
14.6 N
|
| 5 mm |
|
2.97 kg / 2970.0 g
29.1 N
|
| 10 mm |
|
2.97 kg / 2970.0 g
29.1 N
|
MW 16x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.97 kg / 2970.0 g
29.1 N
|
OK |
| 40 °C | -2.2% |
2.90 kg / 2904.7 g
28.5 N
|
OK |
| 60 °C | -4.4% |
2.84 kg / 2839.3 g
27.9 N
|
|
| 80 °C | -6.6% |
2.77 kg / 2774.0 g
27.2 N
|
|
| 100 °C | -28.8% |
2.11 kg / 2114.6 g
20.7 N
|
MW 16x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.87 kg / 5867 g
57.6 N
3 716 Gs
|
N/A |
| 1 mm |
5.46 kg / 5458 g
53.5 N
4 197 Gs
|
4.91 kg / 4912 g
48.2 N
~0 Gs
|
| 2 mm |
4.98 kg / 4977 g
48.8 N
4 007 Gs
|
4.48 kg / 4479 g
43.9 N
~0 Gs
|
| 3 mm |
4.46 kg / 4461 g
43.8 N
3 794 Gs
|
4.01 kg / 4015 g
39.4 N
~0 Gs
|
| 5 mm |
3.43 kg / 3429 g
33.6 N
3 326 Gs
|
3.09 kg / 3086 g
30.3 N
~0 Gs
|
| 10 mm |
1.49 kg / 1495 g
14.7 N
2 196 Gs
|
1.35 kg / 1345 g
13.2 N
~0 Gs
|
| 20 mm |
0.24 kg / 239 g
2.3 N
878 Gs
|
0.21 kg / 215 g
2.1 N
~0 Gs
|
| 50 mm |
0.00 kg / 4 g
0.0 N
113 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 16x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 16x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.50 km/h
(7.36 m/s)
|
0.12 J | |
| 30 mm |
44.78 km/h
(12.44 m/s)
|
0.35 J | |
| 50 mm |
57.81 km/h
(16.06 m/s)
|
0.58 J | |
| 100 mm |
81.75 km/h
(22.71 m/s)
|
1.17 J |
MW 16x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 16x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 141 Mx | 51.4 µWb |
| Współczynnik Pc | 0.27 | Niski (Płaski) |
MW 16x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.97 kg | Standard |
| Woda (dno rzeki) |
3.40 kg
(+0.43 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Sprawdź inne oferty
Zalety oraz wady magnesów neodymowych NdFeB.
Neodymy to nie tylko moc przyciągania, ale także inne kluczowe właściwości, takie jak::
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Wytrzymałość magnetyczna na maksimum – co się na to składa?
Podany w tabeli udźwig jest wynikiem testu laboratoryjnego zrealizowanego w specyficznych, idealnych warunkach:
- z wykorzystaniem płyty ze miękkiej stali, która służy jako zwora magnetyczna
- której grubość to min. 10 mm
- z płaszczyzną wolną od rys
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Praktyczny udźwig: czynniki wpływające
Na realną siłę mają wpływ parametry środowiska pracy, m.in. (od priorytetowych):
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – za chuda blacha nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą generować mniejszy udźwig.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
* Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Bezpieczna praca z magnesami neodymowymi
Uwaga: zadławienie
Magnesy neodymowe to nie zabawki. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Nadwrażliwość na metale
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Ryzyko zmiażdżenia
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Bezpieczna praca
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Nośniki danych
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Kompas i GPS
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Podatność na pękanie
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Pył jest łatwopalny
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Temperatura pracy
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Safety First!
Dowiedz się więcej o ryzyku w artykule: Bezpieczeństwo pracy z magnesami.
