MW 15x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010032
GTIN/EAN: 5906301810315
Średnica Ø
15 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
10.6 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.37 kg / 72.28 N
Indukcja magnetyczna
451.96 mT / 4520 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo pisz poprzez
nasz formularz online
przez naszą stronę.
Masę i budowę magnesów testujesz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Dane produktu - MW 15x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010032 |
| GTIN/EAN | 5906301810315 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 10.6 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.37 kg / 72.28 N |
| Indukcja magnetyczna ~ ? | 451.96 mT / 4520 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe wartości są rezultat symulacji matematycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MW 15x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4518 Gs
451.8 mT
|
7.37 kg / 7370.0 g
72.3 N
|
mocny |
| 1 mm |
3944 Gs
394.4 mT
|
5.62 kg / 5616.2 g
55.1 N
|
mocny |
| 2 mm |
3362 Gs
336.2 mT
|
4.08 kg / 4083.1 g
40.1 N
|
mocny |
| 3 mm |
2820 Gs
282.0 mT
|
2.87 kg / 2871.9 g
28.2 N
|
mocny |
| 5 mm |
1931 Gs
193.1 mT
|
1.35 kg / 1346.9 g
13.2 N
|
bezpieczny |
| 10 mm |
763 Gs
76.3 mT
|
0.21 kg / 210.3 g
2.1 N
|
bezpieczny |
| 15 mm |
349 Gs
34.9 mT
|
0.04 kg / 44.0 g
0.4 N
|
bezpieczny |
| 20 mm |
184 Gs
18.4 mT
|
0.01 kg / 12.2 g
0.1 N
|
bezpieczny |
| 30 mm |
68 Gs
6.8 mT
|
0.00 kg / 1.7 g
0.0 N
|
bezpieczny |
| 50 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 15x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.47 kg / 1474.0 g
14.5 N
|
| 1 mm | Stal (~0.2) |
1.12 kg / 1124.0 g
11.0 N
|
| 2 mm | Stal (~0.2) |
0.82 kg / 816.0 g
8.0 N
|
| 3 mm | Stal (~0.2) |
0.57 kg / 574.0 g
5.6 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 270.0 g
2.6 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 42.0 g
0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 15x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.21 kg / 2211.0 g
21.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.47 kg / 1474.0 g
14.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.74 kg / 737.0 g
7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.69 kg / 3685.0 g
36.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 15x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 737.0 g
7.2 N
|
| 1 mm |
|
1.84 kg / 1842.5 g
18.1 N
|
| 2 mm |
|
3.69 kg / 3685.0 g
36.1 N
|
| 5 mm |
|
7.37 kg / 7370.0 g
72.3 N
|
| 10 mm |
|
7.37 kg / 7370.0 g
72.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 15x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.37 kg / 7370.0 g
72.3 N
|
OK |
| 40 °C | -2.2% |
7.21 kg / 7207.9 g
70.7 N
|
OK |
| 60 °C | -4.4% |
7.05 kg / 7045.7 g
69.1 N
|
OK |
| 80 °C | -6.6% |
6.88 kg / 6883.6 g
67.5 N
|
|
| 100 °C | -28.8% |
5.25 kg / 5247.4 g
51.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 15x8 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
22.23 kg / 22233 g
218.1 N
5 606 Gs
|
N/A |
| 1 mm |
19.55 kg / 19554 g
191.8 N
8 473 Gs
|
17.60 kg / 17599 g
172.6 N
~0 Gs
|
| 2 mm |
16.94 kg / 16943 g
166.2 N
7 887 Gs
|
15.25 kg / 15248 g
149.6 N
~0 Gs
|
| 3 mm |
14.52 kg / 14517 g
142.4 N
7 301 Gs
|
13.07 kg / 13065 g
128.2 N
~0 Gs
|
| 5 mm |
10.37 kg / 10365 g
101.7 N
6 169 Gs
|
9.33 kg / 9329 g
91.5 N
~0 Gs
|
| 10 mm |
4.06 kg / 4063 g
39.9 N
3 862 Gs
|
3.66 kg / 3657 g
35.9 N
~0 Gs
|
| 20 mm |
0.63 kg / 634 g
6.2 N
1 526 Gs
|
0.57 kg / 571 g
5.6 N
~0 Gs
|
| 50 mm |
0.01 kg / 13 g
0.1 N
215 Gs
|
0.01 kg / 11 g
0.1 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 15x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 15x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.06 km/h
(7.52 m/s)
|
0.30 J | |
| 30 mm |
46.07 km/h
(12.80 m/s)
|
0.87 J | |
| 50 mm |
59.46 km/h
(16.52 m/s)
|
1.45 J | |
| 100 mm |
84.09 km/h
(23.36 m/s)
|
2.89 J |
Tabela 9: Odporność na korozję
MW 15x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 15x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 074 Mx | 80.7 µWb |
| Współczynnik Pc | 0.61 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 15x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.37 kg | Standard |
| Woda (dno rzeki) |
8.44 kg
(+1.07 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ~20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.61
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - filtr magnetyczny
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- przy całkowitym braku odstępu (brak powłok)
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Praktyczny udźwig: czynniki wpływające
- Dystans (między magnesem a blachą), gdyż nawet bardzo mała przerwa (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje udźwig.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Kruchość materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Poważne obrażenia
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ogromna siła
Zanim zaczniesz, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Elektronika precyzyjna
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Pył jest łatwopalny
Pył generowany podczas obróbki magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.
Nie dawać dzieciom
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Ostrzeżenie dla alergików
Część populacji ma alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może powodować wysypkę. Rekomendujemy używanie rękawic bezlateksowych.
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
