MW 15x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010032
GTIN/EAN: 5906301810315
Średnica Ø
15 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
10.6 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.37 kg / 72.28 N
Indukcja magnetyczna
451.96 mT / 4520 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie napisz poprzez
formularz zgłoszeniowy
na naszej stronie.
Siłę i budowę elementów magnetycznych zweryfikujesz dzięki naszemu
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Właściwości fizyczne MW 15x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010032 |
| GTIN/EAN | 5906301810315 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 10.6 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.37 kg / 72.28 N |
| Indukcja magnetyczna ~ ? | 451.96 mT / 4520 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Przedstawione dane są bezpośredni efekt kalkulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 15x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4518 Gs
451.8 mT
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
uwaga |
| 1 mm |
3944 Gs
394.4 mT
|
5.62 kg / 12.38 lbs
5616.2 g / 55.1 N
|
uwaga |
| 2 mm |
3362 Gs
336.2 mT
|
4.08 kg / 9.00 lbs
4083.1 g / 40.1 N
|
uwaga |
| 3 mm |
2820 Gs
282.0 mT
|
2.87 kg / 6.33 lbs
2871.9 g / 28.2 N
|
uwaga |
| 5 mm |
1931 Gs
193.1 mT
|
1.35 kg / 2.97 lbs
1346.9 g / 13.2 N
|
słaby uchwyt |
| 10 mm |
763 Gs
76.3 mT
|
0.21 kg / 0.46 lbs
210.3 g / 2.1 N
|
słaby uchwyt |
| 15 mm |
349 Gs
34.9 mT
|
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
słaby uchwyt |
| 20 mm |
184 Gs
18.4 mT
|
0.01 kg / 0.03 lbs
12.2 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
68 Gs
6.8 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
17 Gs
1.7 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 15x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| 1 mm | Stal (~0.2) |
1.12 kg / 2.48 lbs
1124.0 g / 11.0 N
|
| 2 mm | Stal (~0.2) |
0.82 kg / 1.80 lbs
816.0 g / 8.0 N
|
| 3 mm | Stal (~0.2) |
0.57 kg / 1.27 lbs
574.0 g / 5.6 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 15x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.21 kg / 4.87 lbs
2211.0 g / 21.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.47 kg / 3.25 lbs
1474.0 g / 14.5 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.74 kg / 1.62 lbs
737.0 g / 7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.69 kg / 8.12 lbs
3685.0 g / 36.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 15x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 1.62 lbs
737.0 g / 7.2 N
|
| 1 mm |
|
1.84 kg / 4.06 lbs
1842.5 g / 18.1 N
|
| 2 mm |
|
3.69 kg / 8.12 lbs
3685.0 g / 36.1 N
|
| 3 mm |
|
5.53 kg / 12.19 lbs
5527.5 g / 54.2 N
|
| 5 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 10 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 11 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
| 12 mm |
|
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 15x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.37 kg / 16.25 lbs
7370.0 g / 72.3 N
|
OK |
| 40 °C | -2.2% |
7.21 kg / 15.89 lbs
7207.9 g / 70.7 N
|
OK |
| 60 °C | -4.4% |
7.05 kg / 15.53 lbs
7045.7 g / 69.1 N
|
OK |
| 80 °C | -6.6% |
6.88 kg / 15.18 lbs
6883.6 g / 67.5 N
|
|
| 100 °C | -28.8% |
5.25 kg / 11.57 lbs
5247.4 g / 51.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 15x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.23 kg / 49.02 lbs
5 606 Gs
|
3.34 kg / 7.35 lbs
3335 g / 32.7 N
|
N/A |
| 1 mm |
19.55 kg / 43.11 lbs
8 473 Gs
|
2.93 kg / 6.47 lbs
2933 g / 28.8 N
|
17.60 kg / 38.80 lbs
~0 Gs
|
| 2 mm |
16.94 kg / 37.35 lbs
7 887 Gs
|
2.54 kg / 5.60 lbs
2541 g / 24.9 N
|
15.25 kg / 33.62 lbs
~0 Gs
|
| 3 mm |
14.52 kg / 32.00 lbs
7 301 Gs
|
2.18 kg / 4.80 lbs
2178 g / 21.4 N
|
13.07 kg / 28.80 lbs
~0 Gs
|
| 5 mm |
10.37 kg / 22.85 lbs
6 169 Gs
|
1.55 kg / 3.43 lbs
1555 g / 15.3 N
|
9.33 kg / 20.57 lbs
~0 Gs
|
| 10 mm |
4.06 kg / 8.96 lbs
3 862 Gs
|
0.61 kg / 1.34 lbs
609 g / 6.0 N
|
3.66 kg / 8.06 lbs
~0 Gs
|
| 20 mm |
0.63 kg / 1.40 lbs
1 526 Gs
|
0.10 kg / 0.21 lbs
95 g / 0.9 N
|
0.57 kg / 1.26 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
215 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
136 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
91 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
64 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 15x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 15x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.06 km/h
(7.52 m/s)
|
0.30 J | |
| 30 mm |
46.07 km/h
(12.80 m/s)
|
0.87 J | |
| 50 mm |
59.46 km/h
(16.52 m/s)
|
1.45 J | |
| 100 mm |
84.09 km/h
(23.36 m/s)
|
2.89 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 15x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 15x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 074 Mx | 80.7 µWb |
| Współczynnik Pc | 0.61 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 15x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.37 kg | Standard |
| Woda (dno rzeki) |
8.44 kg
(+1.07 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.61
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- z użyciem płyty ze stali niskowęglowej, działającej jako zwora magnetyczna
- o grubości wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni styku
- przy bezpośrednim styku (bez farby)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Gładkość – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Utrata mocy w cieple
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ryzyko pęknięcia
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Reakcje alergiczne
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Ostrożność wymagana
Stosuj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Wpływ na smartfony
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Siła zgniatająca
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Tylko dla dorosłych
Te produkty magnetyczne to nie zabawki. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
