MW 15x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010031
GTIN/EAN: 5906301810308
Średnica Ø
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
6.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.39 kg / 52.83 N
Indukcja magnetyczna
343.70 mT / 3437 Gs
Powłoka
[NiCuNi] nikiel
3.20 ZŁ z VAT / szt. + cena za transport
2.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo skontaktuj się poprzez
formularz zgłoszeniowy
przez naszą stronę.
Siłę a także kształt magnesów wyliczysz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MW 15x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010031 |
| GTIN/EAN | 5906301810308 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 6.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.39 kg / 52.83 N |
| Indukcja magnetyczna ~ ? | 343.70 mT / 3437 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Niniejsze dane stanowią wynik symulacji fizycznej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 15x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3436 Gs
343.6 mT
|
5.39 kg / 5390.0 g
52.9 N
|
uwaga |
| 1 mm |
3054 Gs
305.4 mT
|
4.26 kg / 4258.2 g
41.8 N
|
uwaga |
| 2 mm |
2633 Gs
263.3 mT
|
3.17 kg / 3165.4 g
31.1 N
|
uwaga |
| 3 mm |
2221 Gs
222.1 mT
|
2.25 kg / 2251.5 g
22.1 N
|
uwaga |
| 5 mm |
1521 Gs
152.1 mT
|
1.06 kg / 1056.2 g
10.4 N
|
bezpieczny |
| 10 mm |
585 Gs
58.5 mT
|
0.16 kg / 156.5 g
1.5 N
|
bezpieczny |
| 15 mm |
260 Gs
26.0 mT
|
0.03 kg / 30.8 g
0.3 N
|
bezpieczny |
| 20 mm |
133 Gs
13.3 mT
|
0.01 kg / 8.1 g
0.1 N
|
bezpieczny |
| 30 mm |
47 Gs
4.7 mT
|
0.00 kg / 1.0 g
0.0 N
|
bezpieczny |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (pion)
MW 15x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.08 kg / 1078.0 g
10.6 N
|
| 1 mm | Stal (~0.2) |
0.85 kg / 852.0 g
8.4 N
|
| 2 mm | Stal (~0.2) |
0.63 kg / 634.0 g
6.2 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 450.0 g
4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 212.0 g
2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 15x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.62 kg / 1617.0 g
15.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.08 kg / 1078.0 g
10.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.54 kg / 539.0 g
5.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.70 kg / 2695.0 g
26.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 15x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 539.0 g
5.3 N
|
| 1 mm |
|
1.35 kg / 1347.5 g
13.2 N
|
| 2 mm |
|
2.70 kg / 2695.0 g
26.4 N
|
| 5 mm |
|
5.39 kg / 5390.0 g
52.9 N
|
| 10 mm |
|
5.39 kg / 5390.0 g
52.9 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 15x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.39 kg / 5390.0 g
52.9 N
|
OK |
| 40 °C | -2.2% |
5.27 kg / 5271.4 g
51.7 N
|
OK |
| 60 °C | -4.4% |
5.15 kg / 5152.8 g
50.5 N
|
|
| 80 °C | -6.6% |
5.03 kg / 5034.3 g
49.4 N
|
|
| 100 °C | -28.8% |
3.84 kg / 3837.7 g
37.6 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 15x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
12.86 kg / 12859 g
126.2 N
4 954 Gs
|
N/A |
| 1 mm |
11.54 kg / 11536 g
113.2 N
6 508 Gs
|
10.38 kg / 10382 g
101.9 N
~0 Gs
|
| 2 mm |
10.16 kg / 10159 g
99.7 N
6 107 Gs
|
9.14 kg / 9143 g
89.7 N
~0 Gs
|
| 3 mm |
8.82 kg / 8816 g
86.5 N
5 689 Gs
|
7.93 kg / 7934 g
77.8 N
~0 Gs
|
| 5 mm |
6.40 kg / 6398 g
62.8 N
4 847 Gs
|
5.76 kg / 5759 g
56.5 N
~0 Gs
|
| 10 mm |
2.52 kg / 2520 g
24.7 N
3 042 Gs
|
2.27 kg / 2268 g
22.2 N
~0 Gs
|
| 20 mm |
0.37 kg / 373 g
3.7 N
1 171 Gs
|
0.34 kg / 336 g
3.3 N
~0 Gs
|
| 50 mm |
0.01 kg / 6 g
0.1 N
153 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 15x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 15x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.27 km/h
(8.13 m/s)
|
0.22 J | |
| 30 mm |
49.81 km/h
(13.84 m/s)
|
0.63 J | |
| 50 mm |
64.30 km/h
(17.86 m/s)
|
1.06 J | |
| 100 mm |
90.93 km/h
(25.26 m/s)
|
2.12 J |
Tabela 9: Parametry powłoki (trwałość)
MW 15x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 15x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 428 Mx | 64.3 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 15x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.39 kg | Standard |
| Woda (dno rzeki) |
6.17 kg
(+0.78 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Wyróżniają się ogromną odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- z wykorzystaniem płyty ze miękkiej stali, działającej jako zwora magnetyczna
- o przekroju wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni kontaktu
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w temp. ok. 20°C
Determinanty praktycznego udźwigu magnesu
- Dystans (między magnesem a metalem), ponieważ nawet niewielka przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także farby, korozji czy brudu).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig określano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Zakaz zabawy
Magnesy neodymowe nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Łatwopalność
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Maksymalna temperatura
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Wpływ na zdrowie
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może zakłócić pracę implantu.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Reakcje alergiczne
Niektóre osoby ma alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może skutkować silną reakcję alergiczną. Wskazane jest stosowanie rękawiczek ochronnych.
Poważne obrażenia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Magnesy są kruche
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Ochrona urządzeń
Ekstremalne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
