MW 15x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010031
GTIN/EAN: 5906301810308
Średnica Ø
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
6.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
5.39 kg / 52.83 N
Indukcja magnetyczna
343.70 mT / 3437 Gs
Powłoka
[NiCuNi] nikiel
3.20 ZŁ z VAT / szt. + cena za transport
2.60 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo napisz poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Masę i wygląd magnesu neodymowego zweryfikujesz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 15x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010031 |
| GTIN/EAN | 5906301810308 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 6.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 5.39 kg / 52.83 N |
| Indukcja magnetyczna ~ ? | 343.70 mT / 3437 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione dane stanowią wynik analizy matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 15x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3436 Gs
343.6 mT
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
mocny |
| 1 mm |
3054 Gs
305.4 mT
|
4.26 kg / 9.39 lbs
4258.2 g / 41.8 N
|
mocny |
| 2 mm |
2633 Gs
263.3 mT
|
3.17 kg / 6.98 lbs
3165.4 g / 31.1 N
|
mocny |
| 3 mm |
2221 Gs
222.1 mT
|
2.25 kg / 4.96 lbs
2251.5 g / 22.1 N
|
mocny |
| 5 mm |
1521 Gs
152.1 mT
|
1.06 kg / 2.33 lbs
1056.2 g / 10.4 N
|
niskie ryzyko |
| 10 mm |
585 Gs
58.5 mT
|
0.16 kg / 0.35 lbs
156.5 g / 1.5 N
|
niskie ryzyko |
| 15 mm |
260 Gs
26.0 mT
|
0.03 kg / 0.07 lbs
30.8 g / 0.3 N
|
niskie ryzyko |
| 20 mm |
133 Gs
13.3 mT
|
0.01 kg / 0.02 lbs
8.1 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
47 Gs
4.7 mT
|
0.00 kg / 0.00 lbs
1.0 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 15x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.08 kg / 2.38 lbs
1078.0 g / 10.6 N
|
| 1 mm | Stal (~0.2) |
0.85 kg / 1.88 lbs
852.0 g / 8.4 N
|
| 2 mm | Stal (~0.2) |
0.63 kg / 1.40 lbs
634.0 g / 6.2 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 0.99 lbs
450.0 g / 4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
212.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 15x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.62 kg / 3.56 lbs
1617.0 g / 15.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.08 kg / 2.38 lbs
1078.0 g / 10.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.54 kg / 1.19 lbs
539.0 g / 5.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.70 kg / 5.94 lbs
2695.0 g / 26.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 15x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 1.19 lbs
539.0 g / 5.3 N
|
| 1 mm |
|
1.35 kg / 2.97 lbs
1347.5 g / 13.2 N
|
| 2 mm |
|
2.70 kg / 5.94 lbs
2695.0 g / 26.4 N
|
| 3 mm |
|
4.04 kg / 8.91 lbs
4042.5 g / 39.7 N
|
| 5 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 10 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 11 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
| 12 mm |
|
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 15x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
5.39 kg / 11.88 lbs
5390.0 g / 52.9 N
|
OK |
| 40 °C | -2.2% |
5.27 kg / 11.62 lbs
5271.4 g / 51.7 N
|
OK |
| 60 °C | -4.4% |
5.15 kg / 11.36 lbs
5152.8 g / 50.5 N
|
|
| 80 °C | -6.6% |
5.03 kg / 11.10 lbs
5034.3 g / 49.4 N
|
|
| 100 °C | -28.8% |
3.84 kg / 8.46 lbs
3837.7 g / 37.6 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 15x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
12.86 kg / 28.35 lbs
4 954 Gs
|
1.93 kg / 4.25 lbs
1929 g / 18.9 N
|
N/A |
| 1 mm |
11.54 kg / 25.43 lbs
6 508 Gs
|
1.73 kg / 3.81 lbs
1730 g / 17.0 N
|
10.38 kg / 22.89 lbs
~0 Gs
|
| 2 mm |
10.16 kg / 22.40 lbs
6 107 Gs
|
1.52 kg / 3.36 lbs
1524 g / 14.9 N
|
9.14 kg / 20.16 lbs
~0 Gs
|
| 3 mm |
8.82 kg / 19.44 lbs
5 689 Gs
|
1.32 kg / 2.92 lbs
1322 g / 13.0 N
|
7.93 kg / 17.49 lbs
~0 Gs
|
| 5 mm |
6.40 kg / 14.11 lbs
4 847 Gs
|
0.96 kg / 2.12 lbs
960 g / 9.4 N
|
5.76 kg / 12.70 lbs
~0 Gs
|
| 10 mm |
2.52 kg / 5.56 lbs
3 042 Gs
|
0.38 kg / 0.83 lbs
378 g / 3.7 N
|
2.27 kg / 5.00 lbs
~0 Gs
|
| 20 mm |
0.37 kg / 0.82 lbs
1 171 Gs
|
0.06 kg / 0.12 lbs
56 g / 0.5 N
|
0.34 kg / 0.74 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.01 lbs
153 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
95 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
44 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 15x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 15x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.27 km/h
(8.13 m/s)
|
0.22 J | |
| 30 mm |
49.81 km/h
(13.84 m/s)
|
0.63 J | |
| 50 mm |
64.30 km/h
(17.86 m/s)
|
1.06 J | |
| 100 mm |
90.93 km/h
(25.26 m/s)
|
2.12 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 15x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 15x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 428 Mx | 64.3 µWb |
| Współczynnik Pc | 0.44 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 15x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 5.39 kg | Standard |
| Woda (dno rzeki) |
6.17 kg
(+0.78 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.44
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Dają się łatwo formować do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- z wykorzystaniem podłoża ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (bez zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w standardowej temperaturze otoczenia
Kluczowe elementy wpływające na udźwig
- Dystans – występowanie ciała obcego (rdza, brud, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Stale stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Unikaj kontaktu w przypadku alergii
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Ryzyko zmiażdżenia
Silne magnesy mogą połamać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni między dwa silne magnesy.
Łatwopalność
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do dokumentów, komputera czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Limity termiczne
Unikaj gorąca. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Implanty medyczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
