MW 15x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010029
GTIN/EAN: 5906301810285
Średnica Ø
15 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.98 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.87 kg / 28.14 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.624 ZŁ z VAT / szt. + cena za transport
1.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Zadzwoń już teraz
+48 22 499 98 98
lub skontaktuj się za pomocą
nasz formularz online
w sekcji kontakt.
Siłę oraz budowę magnesu neodymowego wyliczysz w naszym
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 15x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 15x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010029 |
| GTIN/EAN | 5906301810285 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.98 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.87 kg / 28.14 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Przedstawione dane są wynik analizy fizycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MW 15x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2301 Gs
230.1 mT
|
2.87 kg / 2870.0 g
28.2 N
|
uwaga |
| 1 mm |
2098 Gs
209.8 mT
|
2.39 kg / 2386.5 g
23.4 N
|
uwaga |
| 2 mm |
1842 Gs
184.2 mT
|
1.84 kg / 1838.5 g
18.0 N
|
słaby uchwyt |
| 3 mm |
1570 Gs
157.0 mT
|
1.34 kg / 1337.0 g
13.1 N
|
słaby uchwyt |
| 5 mm |
1084 Gs
108.4 mT
|
0.64 kg / 637.0 g
6.2 N
|
słaby uchwyt |
| 10 mm |
410 Gs
41.0 mT
|
0.09 kg / 91.3 g
0.9 N
|
słaby uchwyt |
| 15 mm |
178 Gs
17.8 mT
|
0.02 kg / 17.1 g
0.2 N
|
słaby uchwyt |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 4.3 g
0.0 N
|
słaby uchwyt |
| 30 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.5 g
0.0 N
|
słaby uchwyt |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 15x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.57 kg / 574.0 g
5.6 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 478.0 g
4.7 N
|
| 2 mm | Stal (~0.2) |
0.37 kg / 368.0 g
3.6 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 268.0 g
2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 128.0 g
1.3 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 15x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.86 kg / 861.0 g
8.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.57 kg / 574.0 g
5.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.29 kg / 287.0 g
2.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.44 kg / 1435.0 g
14.1 N
|
MW 15x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.29 kg / 287.0 g
2.8 N
|
| 1 mm |
|
0.72 kg / 717.5 g
7.0 N
|
| 2 mm |
|
1.44 kg / 1435.0 g
14.1 N
|
| 5 mm |
|
2.87 kg / 2870.0 g
28.2 N
|
| 10 mm |
|
2.87 kg / 2870.0 g
28.2 N
|
MW 15x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.87 kg / 2870.0 g
28.2 N
|
OK |
| 40 °C | -2.2% |
2.81 kg / 2806.9 g
27.5 N
|
OK |
| 60 °C | -4.4% |
2.74 kg / 2743.7 g
26.9 N
|
|
| 80 °C | -6.6% |
2.68 kg / 2680.6 g
26.3 N
|
|
| 100 °C | -28.8% |
2.04 kg / 2043.4 g
20.0 N
|
MW 15x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.77 kg / 5768 g
56.6 N
3 869 Gs
|
N/A |
| 1 mm |
5.32 kg / 5318 g
52.2 N
4 419 Gs
|
4.79 kg / 4787 g
47.0 N
~0 Gs
|
| 2 mm |
4.80 kg / 4796 g
47.1 N
4 196 Gs
|
4.32 kg / 4317 g
42.3 N
~0 Gs
|
| 3 mm |
4.25 kg / 4245 g
41.6 N
3 948 Gs
|
3.82 kg / 3821 g
37.5 N
~0 Gs
|
| 5 mm |
3.17 kg / 3170 g
31.1 N
3 412 Gs
|
2.85 kg / 2853 g
28.0 N
~0 Gs
|
| 10 mm |
1.28 kg / 1280 g
12.6 N
2 168 Gs
|
1.15 kg / 1152 g
11.3 N
~0 Gs
|
| 20 mm |
0.18 kg / 183 g
1.8 N
821 Gs
|
0.17 kg / 165 g
1.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
101 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 15x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 15x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.62 km/h
(7.67 m/s)
|
0.12 J | |
| 30 mm |
46.91 km/h
(13.03 m/s)
|
0.34 J | |
| 50 mm |
60.56 km/h
(16.82 m/s)
|
0.56 J | |
| 100 mm |
85.64 km/h
(23.79 m/s)
|
1.13 J |
MW 15x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 15x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 718 Mx | 47.2 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
MW 15x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.87 kg | Standard |
| Woda (dno rzeki) |
3.29 kg
(+0.42 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- przy użyciu zwory ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- o przekroju wynoszącej minimum 10 mm
- z płaszczyzną idealnie równą
- przy zerowej szczelinie (bez powłok)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina – obecność ciała obcego (farba, taśma, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda stal powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Udźwig wyznaczano z wykorzystaniem blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża nośność.
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Uwaga na odpryski
Mimo niklowej powłoki, neodym jest kruchy i nie znosi udarów. Nie rzucaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Interferencja magnetyczna
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Utrata mocy w cieple
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.
Chronić przed dziećmi
Magnesy neodymowe to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Ochrona dłoni
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Łatwopalność
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Interferencja medyczna
Osoby z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Silny magnes może rozregulować pracę implantu.
