MW 15x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010029
GTIN: 5906301810285
Średnica Ø
15 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.98 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.87 kg / 28.14 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.624 ZŁ z VAT / szt. + cena za transport
1.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
formularz zapytania
na stronie kontaktowej.
Siłę a także formę magnesu neodymowego przetestujesz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 15x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 15x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010029 |
| GTIN | 5906301810285 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.98 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.87 kg / 28.14 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Niniejsze wartości są rezultat kalkulacji fizycznej. Wartości bazują na algorytmach dla materiału NdFeB. Rzeczywiste parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
MW 15x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2301 Gs
230.1 mT
|
2.87 kg / 2870.0 g
28.2 N
|
uwaga |
| 1 mm |
2098 Gs
209.8 mT
|
2.39 kg / 2386.5 g
23.4 N
|
uwaga |
| 2 mm |
1842 Gs
184.2 mT
|
1.84 kg / 1838.5 g
18.0 N
|
bezpieczny |
| 3 mm |
1570 Gs
157.0 mT
|
1.34 kg / 1337.0 g
13.1 N
|
bezpieczny |
| 5 mm |
1084 Gs
108.4 mT
|
0.64 kg / 637.0 g
6.2 N
|
bezpieczny |
| 10 mm |
410 Gs
41.0 mT
|
0.09 kg / 91.3 g
0.9 N
|
bezpieczny |
| 15 mm |
178 Gs
17.8 mT
|
0.02 kg / 17.1 g
0.2 N
|
bezpieczny |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 4.3 g
0.0 N
|
bezpieczny |
| 30 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.5 g
0.0 N
|
bezpieczny |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 15x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.57 kg / 574.0 g
5.6 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 478.0 g
4.7 N
|
| 2 mm | Stal (~0.2) |
0.37 kg / 368.0 g
3.6 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 268.0 g
2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 128.0 g
1.3 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 15x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.86 kg / 861.0 g
8.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.57 kg / 574.0 g
5.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.29 kg / 287.0 g
2.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.44 kg / 1435.0 g
14.1 N
|
MW 15x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.29 kg / 287.0 g
2.8 N
|
| 1 mm |
|
0.72 kg / 717.5 g
7.0 N
|
| 2 mm |
|
1.44 kg / 1435.0 g
14.1 N
|
| 5 mm |
|
2.87 kg / 2870.0 g
28.2 N
|
| 10 mm |
|
2.87 kg / 2870.0 g
28.2 N
|
MW 15x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.87 kg / 2870.0 g
28.2 N
|
OK |
| 40 °C | -2.2% |
2.81 kg / 2806.9 g
27.5 N
|
OK |
| 60 °C | -4.4% |
2.74 kg / 2743.7 g
26.9 N
|
|
| 80 °C | -6.6% |
2.68 kg / 2680.6 g
26.3 N
|
|
| 100 °C | -28.8% |
2.04 kg / 2043.4 g
20.0 N
|
MW 15x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.77 kg / 5768 g
56.6 N
3 869 Gs
|
N/A |
| 1 mm |
5.32 kg / 5318 g
52.2 N
4 419 Gs
|
4.79 kg / 4787 g
47.0 N
~0 Gs
|
| 2 mm |
4.80 kg / 4796 g
47.1 N
4 196 Gs
|
4.32 kg / 4317 g
42.3 N
~0 Gs
|
| 3 mm |
4.25 kg / 4245 g
41.6 N
3 948 Gs
|
3.82 kg / 3821 g
37.5 N
~0 Gs
|
| 5 mm |
3.17 kg / 3170 g
31.1 N
3 412 Gs
|
2.85 kg / 2853 g
28.0 N
~0 Gs
|
| 10 mm |
1.28 kg / 1280 g
12.6 N
2 168 Gs
|
1.15 kg / 1152 g
11.3 N
~0 Gs
|
| 20 mm |
0.18 kg / 183 g
1.8 N
821 Gs
|
0.17 kg / 165 g
1.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
101 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 15x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 15x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.62 km/h
(7.67 m/s)
|
0.12 J | |
| 30 mm |
46.91 km/h
(13.03 m/s)
|
0.34 J | |
| 50 mm |
60.56 km/h
(16.82 m/s)
|
0.56 J | |
| 100 mm |
85.64 km/h
(23.79 m/s)
|
1.13 J |
MW 15x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 15x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 718 Mx | 47.2 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
MW 15x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.87 kg | Standard |
| Woda (dno rzeki) |
3.29 kg
(+0.42 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
Inne oferty
Zalety oraz wady magnesów neodymowych NdFeB.
Neodymy to nie tylko moc przyciągania, ale także inne istotne cechy, w tym::
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi zaledwie ~1% (teoretycznie).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Warto znać też słabe strony magnesów neodymowych:
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
Deklarowana siła magnesu odnosi się do wartości maksymalnej, zarejestrowanej w warunkach laboratoryjnych, co oznacza test:
- przy użyciu blachy ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią wolną od rys
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
Na realną siłę mają wpływ konkretne warunki, m.in. (od priorytetowych):
- Szczelina – obecność ciała obcego (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – za chuda płyta nie zamyka strumienia, przez co część mocy marnuje się w powietrzu.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Domieszki stopowe redukują przenikalność magnetyczną i udźwig.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
* Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje udźwig.
Bezpieczna praca z magnesami neodymowymi
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
Trwała utrata siły
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
To nie jest zabawka
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Nie lekceważ mocy
Bądź ostrożny. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Wpływ na smartfony
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Łamliwość magnesów
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Pył jest łatwopalny
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Niklowa powłoka a alergia
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Wpływ na zdrowie
Osoby z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać działanie implantu.
Ostrzeżenie!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
