MW 15x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010029
GTIN/EAN: 5906301810285
Średnica Ø
15 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.98 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.87 kg / 28.14 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.624 ZŁ z VAT / szt. + cena za transport
1.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo zostaw wiadomość korzystając z
formularz zapytania
na stronie kontaktowej.
Moc a także budowę magnesów obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MW 15x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010029 |
| GTIN/EAN | 5906301810285 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.98 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.87 kg / 28.14 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Niniejsze informacje stanowią rezultat analizy inżynierskiej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MW 15x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2301 Gs
230.1 mT
|
2.87 kg / 2870.0 g
28.2 N
|
uwaga |
| 1 mm |
2098 Gs
209.8 mT
|
2.39 kg / 2386.5 g
23.4 N
|
uwaga |
| 2 mm |
1842 Gs
184.2 mT
|
1.84 kg / 1838.5 g
18.0 N
|
słaby uchwyt |
| 3 mm |
1570 Gs
157.0 mT
|
1.34 kg / 1337.0 g
13.1 N
|
słaby uchwyt |
| 5 mm |
1084 Gs
108.4 mT
|
0.64 kg / 637.0 g
6.2 N
|
słaby uchwyt |
| 10 mm |
410 Gs
41.0 mT
|
0.09 kg / 91.3 g
0.9 N
|
słaby uchwyt |
| 15 mm |
178 Gs
17.8 mT
|
0.02 kg / 17.1 g
0.2 N
|
słaby uchwyt |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 4.3 g
0.0 N
|
słaby uchwyt |
| 30 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.5 g
0.0 N
|
słaby uchwyt |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 15x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.57 kg / 574.0 g
5.6 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 478.0 g
4.7 N
|
| 2 mm | Stal (~0.2) |
0.37 kg / 368.0 g
3.6 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 268.0 g
2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 128.0 g
1.3 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 15x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.86 kg / 861.0 g
8.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.57 kg / 574.0 g
5.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.29 kg / 287.0 g
2.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.44 kg / 1435.0 g
14.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 15x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.29 kg / 287.0 g
2.8 N
|
| 1 mm |
|
0.72 kg / 717.5 g
7.0 N
|
| 2 mm |
|
1.44 kg / 1435.0 g
14.1 N
|
| 5 mm |
|
2.87 kg / 2870.0 g
28.2 N
|
| 10 mm |
|
2.87 kg / 2870.0 g
28.2 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 15x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.87 kg / 2870.0 g
28.2 N
|
OK |
| 40 °C | -2.2% |
2.81 kg / 2806.9 g
27.5 N
|
OK |
| 60 °C | -4.4% |
2.74 kg / 2743.7 g
26.9 N
|
|
| 80 °C | -6.6% |
2.68 kg / 2680.6 g
26.3 N
|
|
| 100 °C | -28.8% |
2.04 kg / 2043.4 g
20.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 15x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.77 kg / 5768 g
56.6 N
3 869 Gs
|
N/A |
| 1 mm |
5.32 kg / 5318 g
52.2 N
4 419 Gs
|
4.79 kg / 4787 g
47.0 N
~0 Gs
|
| 2 mm |
4.80 kg / 4796 g
47.1 N
4 196 Gs
|
4.32 kg / 4317 g
42.3 N
~0 Gs
|
| 3 mm |
4.25 kg / 4245 g
41.6 N
3 948 Gs
|
3.82 kg / 3821 g
37.5 N
~0 Gs
|
| 5 mm |
3.17 kg / 3170 g
31.1 N
3 412 Gs
|
2.85 kg / 2853 g
28.0 N
~0 Gs
|
| 10 mm |
1.28 kg / 1280 g
12.6 N
2 168 Gs
|
1.15 kg / 1152 g
11.3 N
~0 Gs
|
| 20 mm |
0.18 kg / 183 g
1.8 N
821 Gs
|
0.17 kg / 165 g
1.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
101 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 15x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 15x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.62 km/h
(7.67 m/s)
|
0.12 J | |
| 30 mm |
46.91 km/h
(13.03 m/s)
|
0.34 J | |
| 50 mm |
60.56 km/h
(16.82 m/s)
|
0.56 J | |
| 100 mm |
85.64 km/h
(23.79 m/s)
|
1.13 J |
Tabela 9: Odporność na korozję
MW 15x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 15x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 718 Mx | 47.2 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 15x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.87 kg | Standard |
| Woda (dno rzeki) |
3.29 kg
(+0.42 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Minusy
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy obudowy lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- z zastosowaniem podłoża ze miękkiej stali, działającej jako zwora magnetyczna
- o przekroju nie mniejszej niż 10 mm
- o szlifowanej powierzchni kontaktu
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i siłę trzymania.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
BHP przy magnesach
Implanty kardiologiczne
Pacjenci z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Interferencja magnetyczna
Silne pole magnetyczne zakłóca działanie kompasów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Uszkodzenia ciała
Bloki magnetyczne mogą zdruzgotać palce w ułamku sekundy. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Ryzyko połknięcia
Silne magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Kruchość materiału
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Wrażliwość na ciepło
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Zakaz obróbki
Proszek generowany podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ryzyko uczulenia
Niektóre osoby wykazuje uczulenie na pierwiastek nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może wywołać wysypkę. Rekomendujemy stosowanie rękawic bezlateksowych.
