MW 15x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010029
GTIN/EAN: 5906301810285
Średnica Ø
15 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.98 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.87 kg / 28.14 N
Indukcja magnetyczna
230.16 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
1.624 ZŁ z VAT / szt. + cena za transport
1.320 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub daj znać poprzez
formularz kontaktowy
przez naszą stronę.
Udźwig oraz wygląd magnesu neodymowego obliczysz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane techniczne - MW 15x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010029 |
| GTIN/EAN | 5906301810285 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.98 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.87 kg / 28.14 N |
| Indukcja magnetyczna ~ ? | 230.16 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Niniejsze informacje stanowią rezultat analizy matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 15x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2301 Gs
230.1 mT
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
mocny |
| 1 mm |
2098 Gs
209.8 mT
|
2.39 kg / 5.26 lbs
2386.5 g / 23.4 N
|
mocny |
| 2 mm |
1842 Gs
184.2 mT
|
1.84 kg / 4.05 lbs
1838.5 g / 18.0 N
|
niskie ryzyko |
| 3 mm |
1570 Gs
157.0 mT
|
1.34 kg / 2.95 lbs
1337.0 g / 13.1 N
|
niskie ryzyko |
| 5 mm |
1084 Gs
108.4 mT
|
0.64 kg / 1.40 lbs
637.0 g / 6.2 N
|
niskie ryzyko |
| 10 mm |
410 Gs
41.0 mT
|
0.09 kg / 0.20 lbs
91.3 g / 0.9 N
|
niskie ryzyko |
| 15 mm |
178 Gs
17.8 mT
|
0.02 kg / 0.04 lbs
17.1 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
89 Gs
8.9 mT
|
0.00 kg / 0.01 lbs
4.3 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 15x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.57 kg / 1.27 lbs
574.0 g / 5.6 N
|
| 1 mm | Stal (~0.2) |
0.48 kg / 1.05 lbs
478.0 g / 4.7 N
|
| 2 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
368.0 g / 3.6 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
268.0 g / 2.6 N
|
| 5 mm | Stal (~0.2) |
0.13 kg / 0.28 lbs
128.0 g / 1.3 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 15x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.86 kg / 1.90 lbs
861.0 g / 8.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.57 kg / 1.27 lbs
574.0 g / 5.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.29 kg / 0.63 lbs
287.0 g / 2.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.44 kg / 3.16 lbs
1435.0 g / 14.1 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 15x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.29 kg / 0.63 lbs
287.0 g / 2.8 N
|
| 1 mm |
|
0.72 kg / 1.58 lbs
717.5 g / 7.0 N
|
| 2 mm |
|
1.44 kg / 3.16 lbs
1435.0 g / 14.1 N
|
| 3 mm |
|
2.15 kg / 4.75 lbs
2152.5 g / 21.1 N
|
| 5 mm |
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
| 10 mm |
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
| 11 mm |
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
| 12 mm |
|
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 15x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.87 kg / 6.33 lbs
2870.0 g / 28.2 N
|
OK |
| 40 °C | -2.2% |
2.81 kg / 6.19 lbs
2806.9 g / 27.5 N
|
OK |
| 60 °C | -4.4% |
2.74 kg / 6.05 lbs
2743.7 g / 26.9 N
|
|
| 80 °C | -6.6% |
2.68 kg / 5.91 lbs
2680.6 g / 26.3 N
|
|
| 100 °C | -28.8% |
2.04 kg / 4.51 lbs
2043.4 g / 20.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 15x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.77 kg / 12.72 lbs
3 869 Gs
|
0.87 kg / 1.91 lbs
865 g / 8.5 N
|
N/A |
| 1 mm |
5.32 kg / 11.73 lbs
4 419 Gs
|
0.80 kg / 1.76 lbs
798 g / 7.8 N
|
4.79 kg / 10.55 lbs
~0 Gs
|
| 2 mm |
4.80 kg / 10.57 lbs
4 196 Gs
|
0.72 kg / 1.59 lbs
719 g / 7.1 N
|
4.32 kg / 9.52 lbs
~0 Gs
|
| 3 mm |
4.25 kg / 9.36 lbs
3 948 Gs
|
0.64 kg / 1.40 lbs
637 g / 6.2 N
|
3.82 kg / 8.42 lbs
~0 Gs
|
| 5 mm |
3.17 kg / 6.99 lbs
3 412 Gs
|
0.48 kg / 1.05 lbs
476 g / 4.7 N
|
2.85 kg / 6.29 lbs
~0 Gs
|
| 10 mm |
1.28 kg / 2.82 lbs
2 168 Gs
|
0.19 kg / 0.42 lbs
192 g / 1.9 N
|
1.15 kg / 2.54 lbs
~0 Gs
|
| 20 mm |
0.18 kg / 0.40 lbs
821 Gs
|
0.03 kg / 0.06 lbs
28 g / 0.3 N
|
0.17 kg / 0.36 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
101 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 15x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 15x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.62 km/h
(7.67 m/s)
|
0.12 J | |
| 30 mm |
46.91 km/h
(13.03 m/s)
|
0.34 J | |
| 50 mm |
60.56 km/h
(16.82 m/s)
|
0.56 J | |
| 100 mm |
85.64 km/h
(23.79 m/s)
|
1.13 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 15x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 15x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 718 Mx | 47.2 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 15x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.87 kg | Standard |
| Woda (dno rzeki) |
3.29 kg
(+0.42 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi tylko ~1% (teoretycznie).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Maksymalny udźwig magnesu – co się na to składa?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w warunkach ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Dystans – obecność ciała obcego (rdza, brud, szczelina) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka płyta nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Skład materiału – nie każda stal reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą obniża udźwig.
Instrukcja bezpiecznej obsługi magnesów
Wpływ na zdrowie
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Ostrożność wymagana
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Samozapłon
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Kruchy spiek
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Utrata mocy w cieple
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Urazy ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Uwaga: zadławienie
Magnesy neodymowe to nie zabawki. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Nadwrażliwość na metale
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może skutkować silną reakcję alergiczną. Sugerujemy stosowanie rękawiczek ochronnych.
