MW 14x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010025
GTIN/EAN: 5906301810247
Średnica Ø
14 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.46 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.76 kg / 27.06 N
Indukcja magnetyczna
244.11 mT / 2441 Gs
Powłoka
[NiCuNi] nikiel
1.845 ZŁ z VAT / szt. + cena za transport
1.500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie daj znać korzystając z
formularz
na naszej stronie.
Parametry oraz kształt magnesu zobaczysz w naszym
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MW 14x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010025 |
| GTIN/EAN | 5906301810247 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.46 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.76 kg / 27.06 N |
| Indukcja magnetyczna ~ ? | 244.11 mT / 2441 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Przedstawione wartości stanowią wynik analizy inżynierskiej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - wykres oddziaływania
MW 14x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2440 Gs
244.0 mT
|
2.76 kg / 2760.0 g
27.1 N
|
uwaga |
| 1 mm |
2199 Gs
219.9 mT
|
2.24 kg / 2241.6 g
22.0 N
|
uwaga |
| 2 mm |
1900 Gs
190.0 mT
|
1.67 kg / 1673.8 g
16.4 N
|
słaby uchwyt |
| 3 mm |
1593 Gs
159.3 mT
|
1.18 kg / 1175.5 g
11.5 N
|
słaby uchwyt |
| 5 mm |
1062 Gs
106.2 mT
|
0.52 kg / 523.0 g
5.1 N
|
słaby uchwyt |
| 10 mm |
380 Gs
38.0 mT
|
0.07 kg / 66.8 g
0.7 N
|
słaby uchwyt |
| 15 mm |
160 Gs
16.0 mT
|
0.01 kg / 11.9 g
0.1 N
|
słaby uchwyt |
| 20 mm |
79 Gs
7.9 mT
|
0.00 kg / 2.9 g
0.0 N
|
słaby uchwyt |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 14x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.55 kg / 552.0 g
5.4 N
|
| 1 mm | Stal (~0.2) |
0.45 kg / 448.0 g
4.4 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 334.0 g
3.3 N
|
| 3 mm | Stal (~0.2) |
0.24 kg / 236.0 g
2.3 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 14x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.83 kg / 828.0 g
8.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.55 kg / 552.0 g
5.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 276.0 g
2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.38 kg / 1380.0 g
13.5 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 14x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 276.0 g
2.7 N
|
| 1 mm |
|
0.69 kg / 690.0 g
6.8 N
|
| 2 mm |
|
1.38 kg / 1380.0 g
13.5 N
|
| 5 mm |
|
2.76 kg / 2760.0 g
27.1 N
|
| 10 mm |
|
2.76 kg / 2760.0 g
27.1 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 14x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.76 kg / 2760.0 g
27.1 N
|
OK |
| 40 °C | -2.2% |
2.70 kg / 2699.3 g
26.5 N
|
OK |
| 60 °C | -4.4% |
2.64 kg / 2638.6 g
25.9 N
|
|
| 80 °C | -6.6% |
2.58 kg / 2577.8 g
25.3 N
|
|
| 100 °C | -28.8% |
1.97 kg / 1965.1 g
19.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 14x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.65 kg / 5652 g
55.4 N
4 030 Gs
|
N/A |
| 1 mm |
5.16 kg / 5157 g
50.6 N
4 662 Gs
|
4.64 kg / 4641 g
45.5 N
~0 Gs
|
| 2 mm |
4.59 kg / 4590 g
45.0 N
4 398 Gs
|
4.13 kg / 4131 g
40.5 N
~0 Gs
|
| 3 mm |
4.00 kg / 4002 g
39.3 N
4 107 Gs
|
3.60 kg / 3602 g
35.3 N
~0 Gs
|
| 5 mm |
2.89 kg / 2891 g
28.4 N
3 490 Gs
|
2.60 kg / 2601 g
25.5 N
~0 Gs
|
| 10 mm |
1.07 kg / 1071 g
10.5 N
2 125 Gs
|
0.96 kg / 964 g
9.5 N
~0 Gs
|
| 20 mm |
0.14 kg / 137 g
1.3 N
759 Gs
|
0.12 kg / 123 g
1.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
89 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 14x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 14x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.91 km/h
(8.03 m/s)
|
0.11 J | |
| 30 mm |
49.34 km/h
(13.71 m/s)
|
0.32 J | |
| 50 mm |
63.69 km/h
(17.69 m/s)
|
0.54 J | |
| 100 mm |
90.07 km/h
(25.02 m/s)
|
1.08 J |
Tabela 9: Parametry powłoki (trwałość)
MW 14x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 14x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 301 Mx | 43.0 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 14x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.76 kg | Standard |
| Woda (dno rzeki) |
3.16 kg
(+0.40 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi tylko ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i gładki charakter.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w temp. ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość blachy – za chuda blacha nie zamyka strumienia, przez co część mocy jest tracona w powietrzu.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig wyznaczano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach neodymowych
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca działanie czujników w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby uniknąć awarii czujników.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ostrzeżenie dla sercowców
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Świadome użytkowanie
Stosuj magnesy świadomie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Ryzyko rozmagnesowania
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.
Chronić przed dziećmi
Zawsze chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Ryzyko uczulenia
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Niszczenie danych
Nie przykładaj magnesów do portfela, laptopa czy telewizora. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
Pył jest łatwopalny
Pył generowany podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
