MW 14x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010025
GTIN/EAN: 5906301810247
Średnica Ø
14 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.46 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.76 kg / 27.06 N
Indukcja magnetyczna
244.11 mT / 2441 Gs
Powłoka
[NiCuNi] nikiel
1.845 ZŁ z VAT / szt. + cena za transport
1.500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie zostaw wiadomość poprzez
formularz zgłoszeniowy
na stronie kontakt.
Siłę a także wygląd magnesów neodymowych zobaczysz w naszym
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry produktu - MW 14x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010025 |
| GTIN/EAN | 5906301810247 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.46 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.76 kg / 27.06 N |
| Indukcja magnetyczna ~ ? | 244.11 mT / 2441 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Niniejsze dane stanowią bezpośredni efekt analizy matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 14x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2440 Gs
244.0 mT
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
uwaga |
| 1 mm |
2199 Gs
219.9 mT
|
2.24 kg / 4.94 lbs
2241.6 g / 22.0 N
|
uwaga |
| 2 mm |
1900 Gs
190.0 mT
|
1.67 kg / 3.69 lbs
1673.8 g / 16.4 N
|
niskie ryzyko |
| 3 mm |
1593 Gs
159.3 mT
|
1.18 kg / 2.59 lbs
1175.5 g / 11.5 N
|
niskie ryzyko |
| 5 mm |
1062 Gs
106.2 mT
|
0.52 kg / 1.15 lbs
523.0 g / 5.1 N
|
niskie ryzyko |
| 10 mm |
380 Gs
38.0 mT
|
0.07 kg / 0.15 lbs
66.8 g / 0.7 N
|
niskie ryzyko |
| 15 mm |
160 Gs
16.0 mT
|
0.01 kg / 0.03 lbs
11.9 g / 0.1 N
|
niskie ryzyko |
| 20 mm |
79 Gs
7.9 mT
|
0.00 kg / 0.01 lbs
2.9 g / 0.0 N
|
niskie ryzyko |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 14x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| 1 mm | Stal (~0.2) |
0.45 kg / 0.99 lbs
448.0 g / 4.4 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
| 3 mm | Stal (~0.2) |
0.24 kg / 0.52 lbs
236.0 g / 2.3 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 14x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.83 kg / 1.83 lbs
828.0 g / 8.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.55 kg / 1.22 lbs
552.0 g / 5.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 14x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 0.61 lbs
276.0 g / 2.7 N
|
| 1 mm |
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 2 mm |
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
| 3 mm |
|
2.07 kg / 4.56 lbs
2070.0 g / 20.3 N
|
| 5 mm |
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
| 10 mm |
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
| 11 mm |
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
| 12 mm |
|
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 14x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.76 kg / 6.08 lbs
2760.0 g / 27.1 N
|
OK |
| 40 °C | -2.2% |
2.70 kg / 5.95 lbs
2699.3 g / 26.5 N
|
OK |
| 60 °C | -4.4% |
2.64 kg / 5.82 lbs
2638.6 g / 25.9 N
|
|
| 80 °C | -6.6% |
2.58 kg / 5.68 lbs
2577.8 g / 25.3 N
|
|
| 100 °C | -28.8% |
1.97 kg / 4.33 lbs
1965.1 g / 19.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 14x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
5.65 kg / 12.46 lbs
4 030 Gs
|
0.85 kg / 1.87 lbs
848 g / 8.3 N
|
N/A |
| 1 mm |
5.16 kg / 11.37 lbs
4 662 Gs
|
0.77 kg / 1.71 lbs
773 g / 7.6 N
|
4.64 kg / 10.23 lbs
~0 Gs
|
| 2 mm |
4.59 kg / 10.12 lbs
4 398 Gs
|
0.69 kg / 1.52 lbs
689 g / 6.8 N
|
4.13 kg / 9.11 lbs
~0 Gs
|
| 3 mm |
4.00 kg / 8.82 lbs
4 107 Gs
|
0.60 kg / 1.32 lbs
600 g / 5.9 N
|
3.60 kg / 7.94 lbs
~0 Gs
|
| 5 mm |
2.89 kg / 6.37 lbs
3 490 Gs
|
0.43 kg / 0.96 lbs
434 g / 4.3 N
|
2.60 kg / 5.74 lbs
~0 Gs
|
| 10 mm |
1.07 kg / 2.36 lbs
2 125 Gs
|
0.16 kg / 0.35 lbs
161 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 20 mm |
0.14 kg / 0.30 lbs
759 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
89 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 14x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MW 14x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.91 km/h
(8.03 m/s)
|
0.11 J | |
| 30 mm |
49.34 km/h
(13.71 m/s)
|
0.32 J | |
| 50 mm |
63.69 km/h
(17.69 m/s)
|
0.54 J | |
| 100 mm |
90.07 km/h
(25.02 m/s)
|
1.08 J |
Tabela 9: Parametry powłoki (trwałość)
MW 14x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 14x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 301 Mx | 43.0 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 14x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.76 kg | Standard |
| Woda (dno rzeki) |
3.16 kg
(+0.40 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Najwyższa nośność magnesu – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- o wypolerowanej powierzchni styku
- przy bezpośrednim styku (bez farby)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Kluczowe elementy wpływające na udźwig
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Udźwig wyznaczano używając wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Ponadto, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Utrata mocy w cieple
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Nie zbliżaj do komputera
Ekstremalne oddziaływanie może skasować dane na kartach kredytowych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Ryzyko uczulenia
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Uszkodzenia czujników
Intensywne promieniowanie magnetyczne destabilizuje działanie czujników w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Nie wierć w magnesach
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Potężne pole
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
Zakaz zabawy
Silne magnesy to nie zabawki. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Rozruszniki serca
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
