MW 14x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010025
GTIN/EAN: 5906301810247
Średnica Ø
14 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
3.46 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.76 kg / 27.06 N
Indukcja magnetyczna
244.11 mT / 2441 Gs
Powłoka
[NiCuNi] nikiel
1.845 ZŁ z VAT / szt. + cena za transport
1.500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Dzwoń do nas
+48 888 99 98 98
albo skontaktuj się poprzez
nasz formularz online
w sekcji kontakt.
Moc oraz formę magnesów sprawdzisz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 14x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 14x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010025 |
| GTIN/EAN | 5906301810247 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 3.46 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.76 kg / 27.06 N |
| Indukcja magnetyczna ~ ? | 244.11 mT / 2441 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze wartości są bezpośredni efekt kalkulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
MW 14x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2440 Gs
244.0 mT
|
2.76 kg / 2760.0 g
27.1 N
|
uwaga |
| 1 mm |
2199 Gs
219.9 mT
|
2.24 kg / 2241.6 g
22.0 N
|
uwaga |
| 2 mm |
1900 Gs
190.0 mT
|
1.67 kg / 1673.8 g
16.4 N
|
bezpieczny |
| 3 mm |
1593 Gs
159.3 mT
|
1.18 kg / 1175.5 g
11.5 N
|
bezpieczny |
| 5 mm |
1062 Gs
106.2 mT
|
0.52 kg / 523.0 g
5.1 N
|
bezpieczny |
| 10 mm |
380 Gs
38.0 mT
|
0.07 kg / 66.8 g
0.7 N
|
bezpieczny |
| 15 mm |
160 Gs
16.0 mT
|
0.01 kg / 11.9 g
0.1 N
|
bezpieczny |
| 20 mm |
79 Gs
7.9 mT
|
0.00 kg / 2.9 g
0.0 N
|
bezpieczny |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.3 g
0.0 N
|
bezpieczny |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 14x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.55 kg / 552.0 g
5.4 N
|
| 1 mm | Stal (~0.2) |
0.45 kg / 448.0 g
4.4 N
|
| 2 mm | Stal (~0.2) |
0.33 kg / 334.0 g
3.3 N
|
| 3 mm | Stal (~0.2) |
0.24 kg / 236.0 g
2.3 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 14x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.83 kg / 828.0 g
8.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.55 kg / 552.0 g
5.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.28 kg / 276.0 g
2.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.38 kg / 1380.0 g
13.5 N
|
MW 14x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.28 kg / 276.0 g
2.7 N
|
| 1 mm |
|
0.69 kg / 690.0 g
6.8 N
|
| 2 mm |
|
1.38 kg / 1380.0 g
13.5 N
|
| 5 mm |
|
2.76 kg / 2760.0 g
27.1 N
|
| 10 mm |
|
2.76 kg / 2760.0 g
27.1 N
|
MW 14x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.76 kg / 2760.0 g
27.1 N
|
OK |
| 40 °C | -2.2% |
2.70 kg / 2699.3 g
26.5 N
|
OK |
| 60 °C | -4.4% |
2.64 kg / 2638.6 g
25.9 N
|
|
| 80 °C | -6.6% |
2.58 kg / 2577.8 g
25.3 N
|
|
| 100 °C | -28.8% |
1.97 kg / 1965.1 g
19.3 N
|
MW 14x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.65 kg / 5652 g
55.4 N
4 030 Gs
|
N/A |
| 1 mm |
5.16 kg / 5157 g
50.6 N
4 662 Gs
|
4.64 kg / 4641 g
45.5 N
~0 Gs
|
| 2 mm |
4.59 kg / 4590 g
45.0 N
4 398 Gs
|
4.13 kg / 4131 g
40.5 N
~0 Gs
|
| 3 mm |
4.00 kg / 4002 g
39.3 N
4 107 Gs
|
3.60 kg / 3602 g
35.3 N
~0 Gs
|
| 5 mm |
2.89 kg / 2891 g
28.4 N
3 490 Gs
|
2.60 kg / 2601 g
25.5 N
~0 Gs
|
| 10 mm |
1.07 kg / 1071 g
10.5 N
2 125 Gs
|
0.96 kg / 964 g
9.5 N
~0 Gs
|
| 20 mm |
0.14 kg / 137 g
1.3 N
759 Gs
|
0.12 kg / 123 g
1.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
89 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 14x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 14x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.91 km/h
(8.03 m/s)
|
0.11 J | |
| 30 mm |
49.34 km/h
(13.71 m/s)
|
0.32 J | |
| 50 mm |
63.69 km/h
(17.69 m/s)
|
0.54 J | |
| 100 mm |
90.07 km/h
(25.02 m/s)
|
1.08 J |
MW 14x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 14x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 301 Mx | 43.0 µWb |
| Współczynnik Pc | 0.31 | Niski (Płaski) |
MW 14x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.76 kg | Standard |
| Woda (dno rzeki) |
3.16 kg
(+0.40 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.31
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- z wykorzystaniem podłoża ze miękkiej stali, pełniącej rolę idealny przewodnik strumienia
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Odstęp (między magnesem a metalem), bowiem nawet niewielka odległość (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą przyciągać słabiej.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża udźwig.
Zakaz obróbki
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Zakłócenia GPS i telefonów
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Niebezpieczeństwo przytrzaśnięcia
Silne magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Nadwrażliwość na metale
Niektóre osoby ma nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może skutkować silną reakcję alergiczną. Wskazane jest używanie rękawiczek ochronnych.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Magnesy są kruche
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Bezpieczna praca
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Implanty kardiologiczne
Pacjenci z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Nie dawać dzieciom
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
