MW 14.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010023
GTIN/EAN: 5906301810223
Średnica Ø
14.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
13.08 g
Kierunek magnesowania
→ diametralny
Udźwig
7.60 kg / 74.57 N
Indukcja magnetyczna
496.78 mT / 4968 Gs
Powłoka
[NiCuNi] nikiel
8.24 ZŁ z VAT / szt. + cena za transport
6.70 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie skontaktuj się za pomocą
nasz formularz online
na naszej stronie.
Siłę oraz wygląd magnesu wyliczysz u nas w
kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane produktu - MW 14.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010023 |
| GTIN/EAN | 5906301810223 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 13.08 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 7.60 kg / 74.57 N |
| Indukcja magnetyczna ~ ? | 496.78 mT / 4968 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe informacje są wynik kalkulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 14.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4965 Gs
496.5 mT
|
7.60 kg / 7600.0 g
74.6 N
|
średnie ryzyko |
| 1 mm |
4309 Gs
430.9 mT
|
5.72 kg / 5722.6 g
56.1 N
|
średnie ryzyko |
| 2 mm |
3660 Gs
366.0 mT
|
4.13 kg / 4129.1 g
40.5 N
|
średnie ryzyko |
| 3 mm |
3063 Gs
306.3 mT
|
2.89 kg / 2892.7 g
28.4 N
|
średnie ryzyko |
| 5 mm |
2098 Gs
209.8 mT
|
1.36 kg / 1356.5 g
13.3 N
|
niskie ryzyko |
| 10 mm |
838 Gs
83.8 mT
|
0.22 kg / 216.5 g
2.1 N
|
niskie ryzyko |
| 15 mm |
389 Gs
38.9 mT
|
0.05 kg / 46.6 g
0.5 N
|
niskie ryzyko |
| 20 mm |
207 Gs
20.7 mT
|
0.01 kg / 13.2 g
0.1 N
|
niskie ryzyko |
| 30 mm |
78 Gs
7.8 mT
|
0.00 kg / 1.9 g
0.0 N
|
niskie ryzyko |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MW 14.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.52 kg / 1520.0 g
14.9 N
|
| 1 mm | Stal (~0.2) |
1.14 kg / 1144.0 g
11.2 N
|
| 2 mm | Stal (~0.2) |
0.83 kg / 826.0 g
8.1 N
|
| 3 mm | Stal (~0.2) |
0.58 kg / 578.0 g
5.7 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 272.0 g
2.7 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 14.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.28 kg / 2280.0 g
22.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.52 kg / 1520.0 g
14.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.76 kg / 760.0 g
7.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.80 kg / 3800.0 g
37.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 14.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.76 kg / 760.0 g
7.5 N
|
| 1 mm |
|
1.90 kg / 1900.0 g
18.6 N
|
| 2 mm |
|
3.80 kg / 3800.0 g
37.3 N
|
| 5 mm |
|
7.60 kg / 7600.0 g
74.6 N
|
| 10 mm |
|
7.60 kg / 7600.0 g
74.6 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 14.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.60 kg / 7600.0 g
74.6 N
|
OK |
| 40 °C | -2.2% |
7.43 kg / 7432.8 g
72.9 N
|
OK |
| 60 °C | -4.4% |
7.27 kg / 7265.6 g
71.3 N
|
OK |
| 80 °C | -6.6% |
7.10 kg / 7098.4 g
69.6 N
|
|
| 100 °C | -28.8% |
5.41 kg / 5411.2 g
53.1 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 14.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
26.50 kg / 26503 g
260.0 N
5 802 Gs
|
N/A |
| 1 mm |
23.16 kg / 23157 g
227.2 N
9 283 Gs
|
20.84 kg / 20841 g
204.5 N
~0 Gs
|
| 2 mm |
19.96 kg / 19956 g
195.8 N
8 617 Gs
|
17.96 kg / 17960 g
176.2 N
~0 Gs
|
| 3 mm |
17.03 kg / 17026 g
167.0 N
7 959 Gs
|
15.32 kg / 15323 g
150.3 N
~0 Gs
|
| 5 mm |
12.09 kg / 12088 g
118.6 N
6 707 Gs
|
10.88 kg / 10879 g
106.7 N
~0 Gs
|
| 10 mm |
4.73 kg / 4731 g
46.4 N
4 196 Gs
|
4.26 kg / 4257 g
41.8 N
~0 Gs
|
| 20 mm |
0.76 kg / 755 g
7.4 N
1 676 Gs
|
0.68 kg / 680 g
6.7 N
~0 Gs
|
| 50 mm |
0.02 kg / 16 g
0.2 N
245 Gs
|
0.01 kg / 14 g
0.1 N
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 14.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 14.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.74 km/h
(6.87 m/s)
|
0.31 J | |
| 30 mm |
42.11 km/h
(11.70 m/s)
|
0.89 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.49 J | |
| 100 mm |
76.87 km/h
(21.35 m/s)
|
2.98 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 14.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 14.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 732 Mx | 87.3 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 14.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.60 kg | Standard |
| Woda (dno rzeki) |
8.70 kg
(+1.10 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je wykonać w rozmaitych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i sprzętu medycznego.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której grubość to min. 10 mm
- z powierzchnią idealnie równą
- w warunkach idealnego przylegania (metal do metalu)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina powietrzna (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Struktura powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Wpływ na zdrowie
Pacjenci z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Dla uczulonych
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Ostrożność wymagana
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Podatność na pękanie
Chroń oczy. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Ryzyko pożaru
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Smartfony i tablety
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Ochrona dłoni
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Nigdy wkładaj dłoni pomiędzy dwa silne magnesy.
Wrażliwość na ciepło
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Nie dawać dzieciom
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Pole magnetyczne a elektronika
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
