MW 14.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010023
GTIN: 5906301810223
Średnica Ø
14.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
13.08 g
Kierunek magnesowania
→ diametralny
Udźwig
7.60 kg / 74.57 N
Indukcja magnetyczna
496.78 mT / 4968 Gs
Powłoka
[NiCuNi] nikiel
8.24 ZŁ z VAT / szt. + cena za transport
6.70 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się przez
formularz kontaktowy
na stronie kontakt.
Właściwości i kształt magnesów testujesz u nas w
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 14.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 14.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010023 |
| GTIN | 5906301810223 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 13.08 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 7.60 kg / 74.57 N |
| Indukcja magnetyczna ~ ? | 496.78 mT / 4968 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione dane są wynik kalkulacji inżynierskiej. Wartości oparte są na algorytmach dla klasy NdFeB. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MW 14.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4965 Gs
496.5 mT
|
7.60 kg / 7600.0 g
74.6 N
|
mocny |
| 1 mm |
4309 Gs
430.9 mT
|
5.72 kg / 5722.6 g
56.1 N
|
mocny |
| 2 mm |
3660 Gs
366.0 mT
|
4.13 kg / 4129.1 g
40.5 N
|
mocny |
| 3 mm |
3063 Gs
306.3 mT
|
2.89 kg / 2892.7 g
28.4 N
|
mocny |
| 5 mm |
2098 Gs
209.8 mT
|
1.36 kg / 1356.5 g
13.3 N
|
niskie ryzyko |
| 10 mm |
838 Gs
83.8 mT
|
0.22 kg / 216.5 g
2.1 N
|
niskie ryzyko |
| 15 mm |
389 Gs
38.9 mT
|
0.05 kg / 46.6 g
0.5 N
|
niskie ryzyko |
| 20 mm |
207 Gs
20.7 mT
|
0.01 kg / 13.2 g
0.1 N
|
niskie ryzyko |
| 30 mm |
78 Gs
7.8 mT
|
0.00 kg / 1.9 g
0.0 N
|
niskie ryzyko |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
MW 14.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.52 kg / 1520.0 g
14.9 N
|
| 1 mm | Stal (~0.2) |
1.14 kg / 1144.0 g
11.2 N
|
| 2 mm | Stal (~0.2) |
0.83 kg / 826.0 g
8.1 N
|
| 3 mm | Stal (~0.2) |
0.58 kg / 578.0 g
5.7 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 272.0 g
2.7 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 14.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.28 kg / 2280.0 g
22.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.52 kg / 1520.0 g
14.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.76 kg / 760.0 g
7.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.80 kg / 3800.0 g
37.3 N
|
MW 14.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.76 kg / 760.0 g
7.5 N
|
| 1 mm |
|
1.90 kg / 1900.0 g
18.6 N
|
| 2 mm |
|
3.80 kg / 3800.0 g
37.3 N
|
| 5 mm |
|
7.60 kg / 7600.0 g
74.6 N
|
| 10 mm |
|
7.60 kg / 7600.0 g
74.6 N
|
MW 14.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.60 kg / 7600.0 g
74.6 N
|
OK |
| 40 °C | -2.2% |
7.43 kg / 7432.8 g
72.9 N
|
OK |
| 60 °C | -4.4% |
7.27 kg / 7265.6 g
71.3 N
|
OK |
| 80 °C | -6.6% |
7.10 kg / 7098.4 g
69.6 N
|
|
| 100 °C | -28.8% |
5.41 kg / 5411.2 g
53.1 N
|
MW 14.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
26.50 kg / 26503 g
260.0 N
5 802 Gs
|
N/A |
| 1 mm |
23.16 kg / 23157 g
227.2 N
9 283 Gs
|
20.84 kg / 20841 g
204.5 N
~0 Gs
|
| 2 mm |
19.96 kg / 19956 g
195.8 N
8 617 Gs
|
17.96 kg / 17960 g
176.2 N
~0 Gs
|
| 3 mm |
17.03 kg / 17026 g
167.0 N
7 959 Gs
|
15.32 kg / 15323 g
150.3 N
~0 Gs
|
| 5 mm |
12.09 kg / 12088 g
118.6 N
6 707 Gs
|
10.88 kg / 10879 g
106.7 N
~0 Gs
|
| 10 mm |
4.73 kg / 4731 g
46.4 N
4 196 Gs
|
4.26 kg / 4257 g
41.8 N
~0 Gs
|
| 20 mm |
0.76 kg / 755 g
7.4 N
1 676 Gs
|
0.68 kg / 680 g
6.7 N
~0 Gs
|
| 50 mm |
0.02 kg / 16 g
0.2 N
245 Gs
|
0.01 kg / 14 g
0.1 N
~0 Gs
|
MW 14.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 14.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.74 km/h
(6.87 m/s)
|
0.31 J | |
| 30 mm |
42.11 km/h
(11.70 m/s)
|
0.89 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.49 J | |
| 100 mm |
76.87 km/h
(21.35 m/s)
|
2.98 J |
MW 14.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 14.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 732 Mx | 87.3 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
MW 14.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.60 kg | Standard |
| Woda (dno rzeki) |
8.70 kg
(+1.10 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
Inne produkty
Wady oraz zalety neodymowych magnesów NdFeB.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- z użyciem podłoża ze miękkiej stali, działającej jako element zamykający obwód
- której grubość to min. 10 mm
- z powierzchnią idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w warunkach ok. 20°C
Co wpływa na udźwig w praktyce
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Jakość powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Kruchy spiek
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Zagrożenie zapłonem
Pył powstający podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach w warunkach domowych.
Unikaj kontaktu w przypadku alergii
Pewna grupa użytkowników ma nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może skutkować wysypkę. Sugerujemy używanie rękawiczek ochronnych.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Urazy ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
Ryzyko połknięcia
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Przechowuj z dala od niepowołanych osób.
Temperatura pracy
Uważaj na temperaturę. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego strukturę magnetyczną i siłę przyciągania.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Kompas i GPS
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
