MW 12x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010022
GTIN/EAN: 5906301810216
Średnica Ø
12 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
6.79 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.93 kg / 48.32 N
Indukcja magnetyczna
495.50 mT / 4955 Gs
Powłoka
[NiCuNi] nikiel
2.47 ZŁ z VAT / szt. + cena za transport
2.01 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie napisz przez
nasz formularz online
w sekcji kontakt.
Moc oraz formę magnesów neodymowych obliczysz u nas w
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja produktu - MW 12x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010022 |
| GTIN/EAN | 5906301810216 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 6.79 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.93 kg / 48.32 N |
| Indukcja magnetyczna ~ ? | 495.50 mT / 4955 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Przedstawione wartości są wynik kalkulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 12x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4952 Gs
495.2 mT
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
mocny |
| 1 mm |
4139 Gs
413.9 mT
|
3.44 kg / 7.59 lbs
3445.0 g / 33.8 N
|
mocny |
| 2 mm |
3356 Gs
335.6 mT
|
2.26 kg / 4.99 lbs
2264.2 g / 22.2 N
|
mocny |
| 3 mm |
2670 Gs
267.0 mT
|
1.43 kg / 3.16 lbs
1433.5 g / 14.1 N
|
słaby uchwyt |
| 5 mm |
1660 Gs
166.0 mT
|
0.55 kg / 1.22 lbs
554.1 g / 5.4 N
|
słaby uchwyt |
| 10 mm |
565 Gs
56.5 mT
|
0.06 kg / 0.14 lbs
64.3 g / 0.6 N
|
słaby uchwyt |
| 15 mm |
243 Gs
24.3 mT
|
0.01 kg / 0.03 lbs
11.8 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
124 Gs
12.4 mT
|
0.00 kg / 0.01 lbs
3.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
45 Gs
4.5 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 12x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.99 kg / 2.17 lbs
986.0 g / 9.7 N
|
| 1 mm | Stal (~0.2) |
0.69 kg / 1.52 lbs
688.0 g / 6.7 N
|
| 2 mm | Stal (~0.2) |
0.45 kg / 1.00 lbs
452.0 g / 4.4 N
|
| 3 mm | Stal (~0.2) |
0.29 kg / 0.63 lbs
286.0 g / 2.8 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 12x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.48 kg / 3.26 lbs
1479.0 g / 14.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.99 kg / 2.17 lbs
986.0 g / 9.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.49 kg / 1.09 lbs
493.0 g / 4.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.47 kg / 5.43 lbs
2465.0 g / 24.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 12x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.49 kg / 1.09 lbs
493.0 g / 4.8 N
|
| 1 mm |
|
1.23 kg / 2.72 lbs
1232.5 g / 12.1 N
|
| 2 mm |
|
2.47 kg / 5.43 lbs
2465.0 g / 24.2 N
|
| 3 mm |
|
3.70 kg / 8.15 lbs
3697.5 g / 36.3 N
|
| 5 mm |
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
| 10 mm |
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
| 11 mm |
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
| 12 mm |
|
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 12x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.93 kg / 10.87 lbs
4930.0 g / 48.4 N
|
OK |
| 40 °C | -2.2% |
4.82 kg / 10.63 lbs
4821.5 g / 47.3 N
|
OK |
| 60 °C | -4.4% |
4.71 kg / 10.39 lbs
4713.1 g / 46.2 N
|
OK |
| 80 °C | -6.6% |
4.60 kg / 10.15 lbs
4604.6 g / 45.2 N
|
|
| 100 °C | -28.8% |
3.51 kg / 7.74 lbs
3510.2 g / 34.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 12x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.10 kg / 37.69 lbs
5 795 Gs
|
2.56 kg / 5.65 lbs
2565 g / 25.2 N
|
N/A |
| 1 mm |
14.44 kg / 31.83 lbs
9 101 Gs
|
2.17 kg / 4.77 lbs
2166 g / 21.2 N
|
12.99 kg / 28.64 lbs
~0 Gs
|
| 2 mm |
11.95 kg / 26.34 lbs
8 279 Gs
|
1.79 kg / 3.95 lbs
1792 g / 17.6 N
|
10.75 kg / 23.71 lbs
~0 Gs
|
| 3 mm |
9.74 kg / 21.48 lbs
7 477 Gs
|
1.46 kg / 3.22 lbs
1462 g / 14.3 N
|
8.77 kg / 19.33 lbs
~0 Gs
|
| 5 mm |
6.27 kg / 13.82 lbs
5 997 Gs
|
0.94 kg / 2.07 lbs
940 g / 9.2 N
|
5.64 kg / 12.44 lbs
~0 Gs
|
| 10 mm |
1.92 kg / 4.24 lbs
3 320 Gs
|
0.29 kg / 0.64 lbs
288 g / 2.8 N
|
1.73 kg / 3.81 lbs
~0 Gs
|
| 20 mm |
0.22 kg / 0.49 lbs
1 131 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
142 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
89 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
30 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 12x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 12x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
27.40 km/h
(7.61 m/s)
|
0.20 J | |
| 30 mm |
47.07 km/h
(13.08 m/s)
|
0.58 J | |
| 50 mm |
60.77 km/h
(16.88 m/s)
|
0.97 J | |
| 100 mm |
85.94 km/h
(23.87 m/s)
|
1.93 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 12x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 12x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 650 Mx | 56.5 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 12x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.93 kg | Standard |
| Woda (dno rzeki) |
5.64 kg
(+0.71 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Wytwarzają niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- w warunkach bezszczelinowych (metal do metalu)
- przy pionowym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą obniża siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Uszkodzenia ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Ochrona urządzeń
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.
Nadwrażliwość na metale
Niektóre osoby ma nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Wskazane jest noszenie rękawic bezlateksowych.
Limity termiczne
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Magnesy są kruche
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Uwaga medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Zakaz zabawy
Neodymowe magnesy to nie zabawki. Połknięcie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Nie lekceważ mocy
Używaj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Smartfony i tablety
Silne pole magnetyczne destabilizuje funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
