Magnesy neodymowe – najmocniejsze na rynku

Potrzebujesz silnego pola magnetycznego? Mamy w ofercie kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do użytku w domu, warsztatu oraz modelarstwa. Sprawdź naszą ofertę dostępne od ręki.

zobacz katalog magnesów

Uchwyty do poszukiwań wodnych

Odkryj pasję z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz wzmocnione liny są niezawodne w rzekach i jeziorach.

znajdź swój magnes do wody

Uchwyty magnetyczne montażowe

Niezawodne rozwiązania do mocowania bezinwazyjnego. Mocowania gwintowane (zewnętrznym lub wewnętrznym) gwarantują błyskawiczną organizację pracy na magazynach. Są niezastąpione przy instalacji lamp, czujników oraz banerów.

sprawdź zastosowania przemysłowe

📦 Szybka wysyłka: kup do 14:00, wyślemy dziś!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MW 12x6 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010021

GTIN/EAN: 5906301810209

5.00

Średnica Ø

12 mm [±0,1 mm]

Wysokość

6 mm [±0,1 mm]

Waga

5.09 g

Kierunek magnesowania

↑ osiowy

Udźwig

4.60 kg / 45.09 N

Indukcja magnetyczna

437.99 mT / 4380 Gs

Powłoka

[NiCuNi] nikiel

1.882 z VAT / szt. + cena za transport

1.530 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
1.530 ZŁ
1.882 ZŁ
cena od 432 szt.
1.377 ZŁ
1.694 ZŁ
cena od 864 szt.
1.346 ZŁ
1.656 ZŁ
Nie wiesz gdzie kupić?

Zadzwoń i zapytaj +48 888 99 98 98 ewentualnie skontaktuj się korzystając z formularz kontaktowy na stronie kontaktowej.
Parametry a także kształt magnesów neodymowych przetestujesz u nas w kalkulatorze siły.

Zamów do 14:00, a wyślemy dziś!

Parametry techniczne produktu - MW 12x6 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 12x6 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010021
GTIN/EAN 5906301810209
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 12 mm [±0,1 mm]
Wysokość 6 mm [±0,1 mm]
Waga 5.09 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 4.60 kg / 45.09 N
Indukcja magnetyczna ~ ? 437.99 mT / 4380 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 12x6 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu - dane

Poniższe wartości stanowią bezpośredni efekt kalkulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 12x6 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 4377 Gs
437.7 mT
4.60 kg / 4600.0 g
45.1 N
uwaga
1 mm 3688 Gs
368.8 mT
3.27 kg / 3265.4 g
32.0 N
uwaga
2 mm 2999 Gs
299.9 mT
2.16 kg / 2159.7 g
21.2 N
uwaga
3 mm 2386 Gs
238.6 mT
1.37 kg / 1366.7 g
13.4 N
słaby uchwyt
5 mm 1474 Gs
147.4 mT
0.52 kg / 521.4 g
5.1 N
słaby uchwyt
10 mm 489 Gs
48.9 mT
0.06 kg / 57.4 g
0.6 N
słaby uchwyt
15 mm 205 Gs
20.5 mT
0.01 kg / 10.1 g
0.1 N
słaby uchwyt
20 mm 103 Gs
10.3 mT
0.00 kg / 2.5 g
0.0 N
słaby uchwyt
30 mm 36 Gs
3.6 mT
0.00 kg / 0.3 g
0.0 N
słaby uchwyt
50 mm 9 Gs
0.9 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt

Tabela 2: Siła równoległa ześlizgu (pion)
MW 12x6 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.92 kg / 920.0 g
9.0 N
1 mm Stal (~0.2) 0.65 kg / 654.0 g
6.4 N
2 mm Stal (~0.2) 0.43 kg / 432.0 g
4.2 N
3 mm Stal (~0.2) 0.27 kg / 274.0 g
2.7 N
5 mm Stal (~0.2) 0.10 kg / 104.0 g
1.0 N
10 mm Stal (~0.2) 0.01 kg / 12.0 g
0.1 N
15 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 12x6 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
1.38 kg / 1380.0 g
13.5 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.92 kg / 920.0 g
9.0 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.46 kg / 460.0 g
4.5 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
2.30 kg / 2300.0 g
22.6 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 12x6 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.46 kg / 460.0 g
4.5 N
1 mm
25%
1.15 kg / 1150.0 g
11.3 N
2 mm
50%
2.30 kg / 2300.0 g
22.6 N
5 mm
100%
4.60 kg / 4600.0 g
45.1 N
10 mm
100%
4.60 kg / 4600.0 g
45.1 N

Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 12x6 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 4.60 kg / 4600.0 g
45.1 N
OK
40 °C -2.2% 4.50 kg / 4498.8 g
44.1 N
OK
60 °C -4.4% 4.40 kg / 4397.6 g
43.1 N
80 °C -6.6% 4.30 kg / 4296.4 g
42.1 N
100 °C -28.8% 3.28 kg / 3275.2 g
32.1 N

Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 12x6 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 13.36 kg / 13360 g
131.1 N
5 536 Gs
N/A
1 mm 11.39 kg / 11385 g
111.7 N
8 082 Gs
10.25 kg / 10247 g
100.5 N
~0 Gs
2 mm 9.48 kg / 9484 g
93.0 N
7 376 Gs
8.54 kg / 8536 g
83.7 N
~0 Gs
3 mm 7.77 kg / 7767 g
76.2 N
6 675 Gs
6.99 kg / 6991 g
68.6 N
~0 Gs
5 mm 5.01 kg / 5010 g
49.1 N
5 361 Gs
4.51 kg / 4509 g
44.2 N
~0 Gs
10 mm 1.51 kg / 1515 g
14.9 N
2 948 Gs
1.36 kg / 1363 g
13.4 N
~0 Gs
20 mm 0.17 kg / 167 g
1.6 N
978 Gs
0.15 kg / 150 g
1.5 N
~0 Gs
50 mm 0.00 kg / 2 g
0.0 N
116 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 12x6 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 6.5 cm
Implant słuchowy 10 Gs (1.0 mT) 5.0 cm
Czasomierz 20 Gs (2.0 mT) 4.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 3.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 3.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MW 12x6 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 30.55 km/h
(8.49 m/s)
0.18 J
30 mm 52.51 km/h
(14.59 m/s)
0.54 J
50 mm 67.79 km/h
(18.83 m/s)
0.90 J
100 mm 95.87 km/h
(26.63 m/s)
1.81 J

Tabela 9: Odporność na korozję
MW 12x6 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Strumień)
MW 12x6 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 5 024 Mx 50.2 µWb
Współczynnik Pc 0.59 Niski (Płaski)

Tabela 11: Hydrostatyka i wyporność
MW 12x6 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 4.60 kg Standard
Woda (dno rzeki) 5.27 kg
(+0.67 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Siła zsuwająca

*Ważne: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły prostopadłej.

2. Nasycenie magnetyczne

*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.

3. Spadek mocy w temperaturze

*Dla standardowych magnesów granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.59

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010021-2025
Przelicznik magnesów
Siła (udźwig)

Pole magnetyczne

Inne oferty

Oferowany produkt to niezwykle mocny magnes walcowy, który został wykonany z trwałego materiału NdFeB, co przy wymiarach Ø12x6 mm gwarantuje optymalną moc. Model MW 12x6 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz profesjonalną jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla profesjonalnych inżynierów i konstruktorów. Jako magnes cylindryczny o imponującej sile (ok. 4.60 kg), produkt ten jest dostępny od ręki z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w typowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest idealny do budowy silników elektrycznych, zaawansowanych czujników oraz wydajnych separatorów magnetycznych, gdzie liczy się skupienie pola na małej powierzchni. Dzięki sile przyciągania 45.09 N przy wadze zaledwie 5.09 g, ten walec jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na kruchość materiału NdFeB, absolutnie odradzamy wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego profesjonalnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się żywice anaerobowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Klasa N38 to najczęściej wybierany standard dla profesjonalnych magnesów neodymowych, oferujący świetny balans ekonomiczny oraz stabilność pracy. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø12x6), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø12x6 mm, co przy wadze 5.09 g czyni go elementem o imponującej gęstości energii magnetycznej. Wartość 45.09 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 5.09 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 12 mm. Taki układ jest najbardziej pożądany przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady i zalety magnesów z neodymu Nd2Fe14B.

Plusy

Oprócz ogromną siłą, magnesy typu NdFeB oferują wiele innych atutów::
  • Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (wg danych).
  • Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
  • Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
  • Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
  • Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
  • Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.

Wady

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy to dobre rozwiązanie.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Analiza siły trzymania

Wytrzymałość na oderwanie magnesu w warunkach idealnychod czego zależy?

Widoczny w opisie parametr udźwigu reprezentuje wartości maksymalnej, którą uzyskano w środowisku optymalnym, co oznacza test:
  • na płycie wykonanej ze stali miękkiej, doskonale skupiającej strumień magnetyczny
  • posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
  • z powierzchnią idealnie równą
  • bez żadnej szczeliny pomiędzy magnesem a stalą
  • dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
  • przy temperaturze otoczenia pokojowej

Determinanty praktycznego udźwigu magnesu

Trzeba mieć na uwadze, że siła w aplikacji może być niższe pod wpływem następujących czynników, zaczynając od najistotniejszych:
  • Szczelina powietrzna (między magnesem a blachą), gdyż nawet bardzo mała przerwa (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
  • Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
  • Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Większa zawartość węgla redukują przenikalność magnetyczną i siłę trzymania.
  • Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
  • Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.

Udźwig wyznaczano stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.

Zasady BHP dla użytkowników magnesów
Magnesy są kruche

Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.

Niszczenie danych

Unikaj zbliżania magnesów do dokumentów, komputera czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.

Maksymalna temperatura

Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).

Zasady obsługi

Bądź ostrożny. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.

Zagrożenie wybuchem pyłu

Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.

Zagrożenie fizyczne

Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Unikaj kontaktu w przypadku alergii

Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.

Rozruszniki serca

Pacjenci z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować działanie urządzenia ratującego życie.

Chronić przed dziećmi

Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.

Wpływ na smartfony

Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.

Ważne! Szczegółowe omówienie o zagrożeniach w artykule: Bezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98