MW 12x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010021
GTIN/EAN: 5906301810209
Średnica Ø
12 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
5.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.60 kg / 45.09 N
Indukcja magnetyczna
437.99 mT / 4380 Gs
Powłoka
[NiCuNi] nikiel
1.882 ZŁ z VAT / szt. + cena za transport
1.530 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie napisz za pomocą
nasz formularz online
na stronie kontakt.
Siłę oraz kształt magnesów neodymowych zweryfikujesz u nas w
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MW 12x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010021 |
| GTIN/EAN | 5906301810209 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 5.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.60 kg / 45.09 N |
| Indukcja magnetyczna ~ ? | 437.99 mT / 4380 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Przedstawione informacje stanowią bezpośredni efekt kalkulacji fizycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 12x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4377 Gs
437.7 mT
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
uwaga |
| 1 mm |
3688 Gs
368.8 mT
|
3.27 kg / 7.20 lbs
3265.4 g / 32.0 N
|
uwaga |
| 2 mm |
2999 Gs
299.9 mT
|
2.16 kg / 4.76 lbs
2159.7 g / 21.2 N
|
uwaga |
| 3 mm |
2386 Gs
238.6 mT
|
1.37 kg / 3.01 lbs
1366.7 g / 13.4 N
|
słaby uchwyt |
| 5 mm |
1474 Gs
147.4 mT
|
0.52 kg / 1.15 lbs
521.4 g / 5.1 N
|
słaby uchwyt |
| 10 mm |
489 Gs
48.9 mT
|
0.06 kg / 0.13 lbs
57.4 g / 0.6 N
|
słaby uchwyt |
| 15 mm |
205 Gs
20.5 mT
|
0.01 kg / 0.02 lbs
10.1 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MW 12x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.92 kg / 2.03 lbs
920.0 g / 9.0 N
|
| 1 mm | Stal (~0.2) |
0.65 kg / 1.44 lbs
654.0 g / 6.4 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 0.95 lbs
432.0 g / 4.2 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
274.0 g / 2.7 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.23 lbs
104.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 12x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.38 kg / 3.04 lbs
1380.0 g / 13.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.92 kg / 2.03 lbs
920.0 g / 9.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.46 kg / 1.01 lbs
460.0 g / 4.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.30 kg / 5.07 lbs
2300.0 g / 22.6 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 12x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.46 kg / 1.01 lbs
460.0 g / 4.5 N
|
| 1 mm |
|
1.15 kg / 2.54 lbs
1150.0 g / 11.3 N
|
| 2 mm |
|
2.30 kg / 5.07 lbs
2300.0 g / 22.6 N
|
| 3 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 5 mm |
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
| 10 mm |
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
| 11 mm |
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
| 12 mm |
|
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 12x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.60 kg / 10.14 lbs
4600.0 g / 45.1 N
|
OK |
| 40 °C | -2.2% |
4.50 kg / 9.92 lbs
4498.8 g / 44.1 N
|
OK |
| 60 °C | -4.4% |
4.40 kg / 9.70 lbs
4397.6 g / 43.1 N
|
|
| 80 °C | -6.6% |
4.30 kg / 9.47 lbs
4296.4 g / 42.1 N
|
|
| 100 °C | -28.8% |
3.28 kg / 7.22 lbs
3275.2 g / 32.1 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 12x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
13.36 kg / 29.45 lbs
5 536 Gs
|
2.00 kg / 4.42 lbs
2004 g / 19.7 N
|
N/A |
| 1 mm |
11.39 kg / 25.10 lbs
8 082 Gs
|
1.71 kg / 3.77 lbs
1708 g / 16.8 N
|
10.25 kg / 22.59 lbs
~0 Gs
|
| 2 mm |
9.48 kg / 20.91 lbs
7 376 Gs
|
1.42 kg / 3.14 lbs
1423 g / 14.0 N
|
8.54 kg / 18.82 lbs
~0 Gs
|
| 3 mm |
7.77 kg / 17.12 lbs
6 675 Gs
|
1.17 kg / 2.57 lbs
1165 g / 11.4 N
|
6.99 kg / 15.41 lbs
~0 Gs
|
| 5 mm |
5.01 kg / 11.05 lbs
5 361 Gs
|
0.75 kg / 1.66 lbs
752 g / 7.4 N
|
4.51 kg / 9.94 lbs
~0 Gs
|
| 10 mm |
1.51 kg / 3.34 lbs
2 948 Gs
|
0.23 kg / 0.50 lbs
227 g / 2.2 N
|
1.36 kg / 3.01 lbs
~0 Gs
|
| 20 mm |
0.17 kg / 0.37 lbs
978 Gs
|
0.02 kg / 0.06 lbs
25 g / 0.2 N
|
0.15 kg / 0.33 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
116 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
72 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 12x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 12x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.55 km/h
(8.49 m/s)
|
0.18 J | |
| 30 mm |
52.51 km/h
(14.59 m/s)
|
0.54 J | |
| 50 mm |
67.79 km/h
(18.83 m/s)
|
0.90 J | |
| 100 mm |
95.87 km/h
(26.63 m/s)
|
1.81 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 12x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 12x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 024 Mx | 50.2 µWb |
| Współczynnik Pc | 0.59 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 12x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.60 kg | Standard |
| Woda (dno rzeki) |
5.27 kg
(+0.67 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.59
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalny udźwig magnesu – od czego zależy?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o grubości nie mniejszej niż 10 mm
- o wypolerowanej powierzchni kontaktu
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w neutralnych warunkach termicznych
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i siłę trzymania.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Niklowa powłoka a alergia
Pewna grupa użytkowników posiada uczulenie na nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może skutkować wysypkę. Zalecamy noszenie rękawiczek ochronnych.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ostrożność wymagana
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
Uwaga: zadławienie
Neodymowe magnesy to nie zabawki. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Niszczenie danych
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Podatność na pękanie
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Interferencja magnetyczna
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie czujników w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
